分析 設(shè)圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2(r>0).由于圓心在直線y=2x上,且與直線 4x-3y-11=0切于點(diǎn)(2,-1),可得$\left\{\begin{array}{l}{b=2a}\\{\frac{|4a-3b-11|}{5}=r}\\{(2-a)^{2}+(-1-b)^{2}={r}^{2}}\end{array}\right.$,解得即可.
解答 解:設(shè)圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2(r>0).
∵圓心在直線y=2x上,且與直線 4x-3y-11=0切于點(diǎn)(2,-1),
∴$\left\{\begin{array}{l}{b=2a}\\{\frac{|4a-3b-11|}{5}=r}\\{(2-a)^{2}+(-1-b)^{2}={r}^{2}}\end{array}\right.$,解得a=$\frac{2}{11}$,b=$\frac{4}{11}$,r=$\frac{25}{11}$.
故所求的圓的方程為(x-$\frac{2}{11}$)2+(y-$\frac{4}{11}$)2=$\frac{625}{121}$.
點(diǎn)評 本題考查了圓的標(biāo)準(zhǔn)方程、直線與圓相切的位置關(guān)系,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{x}$ | B. | 1±$\sqrt{x}$ | C. | 1-$\sqrt{x}$ | D. | $\sqrt{x-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=log3x+4logx3 | B. | y=ex+4e-x | ||
C. | y=sinx+$\frac{4}{sinx}$(0<x<π) | D. | y=x+$\frac{4}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=2 | B. | m=-1 | C. | m=2或m=-1 | D. | -3≤m≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com