某企業(yè)最近四年的年利潤(rùn)呈上升趨勢(shì),通過統(tǒng)計(jì),前三年的年利潤(rùn)增長(zhǎng)數(shù)相同,后兩年的年利潤(rùn)增長(zhǎng)率相同,已知第一年的年利潤(rùn)為3千萬元,第四年的年利潤(rùn)為6.25千萬元,則該企業(yè)這四年的平均年利潤(rùn)為
 
千萬元.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)前三年的利潤(rùn)增長(zhǎng)率相同,后兩年的年增長(zhǎng)率相同,建立方程關(guān)系進(jìn)行求解即可.
解答: 解:設(shè)前三年的年利潤(rùn)增長(zhǎng)數(shù)為x,
則前四年的利潤(rùn)分別為3,3+x,3+2x,6.25,
∵后兩年的年利潤(rùn)增長(zhǎng)率相同,設(shè)增長(zhǎng)率為p,
(3+x)(1+p)=3+2x
(3+2x)(1+p)=6.25=
25
4
,
兩式相除得
3+x
3+2x
=
3+2x
25
4

整理得16x2+23x-39=0,
即(x-1)(16x+39)=0,
解得x=1或x=-
39
16
(舍),
則前4年的利潤(rùn)分別為3,4,5,
25
4
,
則四年的平均利潤(rùn)為
3+4+5+
25
4
4
=
73
16
=4.5625(千萬元),
故答案為:
73
16
或4.5625.
點(diǎn)評(píng):本題主要考查函數(shù)的應(yīng)用問題,利用增長(zhǎng)率之間的關(guān)系,建立方程求出增長(zhǎng)數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用0,1,3,5,7這五個(gè)數(shù)字,可以組成多少個(gè)沒有重復(fù)數(shù)字且5不在十位位置上的五位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若銳角α滿足2sinα+2
3
cosα=3,則tan(α+
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)a,b,c及函數(shù)f(x)=|x-a|+|x-1|.
(I)當(dāng)a=3時(shí),解不等式f(x)<6;
(Ⅱ)若a+b+c=1,且不等式f(x)≥
a2+b2+c2
b+c
對(duì)任意實(shí)數(shù)x都成立.求證:0<a≤
2
-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市調(diào)研機(jī)構(gòu)對(duì)該市工薪階層對(duì)“樓市限購令”態(tài)度進(jìn)行調(diào)查,抽調(diào)了50名市民,他們?cè)率杖腩l數(shù)分布表和對(duì)“樓市限購令”贊成人數(shù)如下表:
月收入(單位:百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)5c1055
頻率0.1ab0.20.10.1
贊成人數(shù)4812531
(Ⅰ)若所抽調(diào)的50名市民中,收入在[35,45)的有15名,求a,b,c的值,并完成頻率分布直方圖; 
(Ⅱ)若從收入(單位:百元)在[55,65)的被調(diào)查者中隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,求選中的2人至少有1人不贊成“樓市限購令”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

第20屆世界杯足球賽將于2014年夏季在巴西舉行,共32支球隊(duì)有幸參加,它們先分成8個(gè)小組進(jìn)行循環(huán)賽,決出16強(qiáng)(每隊(duì)均與本組其他隊(duì)賽一場(chǎng),各組一、二名晉級(jí)16強(qiáng)),這16支球隊(duì)按確定的程序進(jìn)行淘汰賽,最后決出冠、亞軍,此外還要決出第三名、第四名,問這屆世界杯總共將進(jìn)行多少場(chǎng)比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若斜率互為相反數(shù)且相交于點(diǎn)P(1,1)的兩條直線被圓O:x2+y2=4所截的弦長(zhǎng)之比為
6
2
,則這兩條直線的斜率之積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=6,a1=4,則公差d等于( 。
A、-2
B、1
C、
5
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+lnx-
k(x-2)
x
,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個(gè)零點(diǎn);
(3)若k為整數(shù),且當(dāng)x>2時(shí),f(x)>0恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案