如圖,設(shè)計(jì)一個(gè)正四棱錐形冷水塔,高是0.85米,底面的邊長(zhǎng)是1.5米.
(1)求這個(gè)正四棱錐形冷水塔的容積;
(2)制造這個(gè)水塔的側(cè)面需要多少平方米鋼板?(精確到0.01米2

【答案】分析:(1)確定棱錐的邊長(zhǎng)與棱錐的高,然后直接求這個(gè)正四棱錐形冷水塔的容積;
(2)求出棱錐的斜高,求出側(cè)面積,即可得到制造這個(gè)水塔的側(cè)面需要多少平方米鋼板(精確到0.01米2).
解答:(本題滿分12分)本題共有2小題,第1小題滿分(5分),第2小題滿分(7分).
解:(1)如圖正四棱錐底面的邊長(zhǎng)是1.5米,高是0.85米
=
所以這個(gè)四棱錐冷水塔的容積是0.6375m3
(2)如圖,取底面邊長(zhǎng)的中點(diǎn)E,連接SE,

=
答:制造這個(gè)水塔的側(cè)面需要3.40平方米鋼板.
點(diǎn)評(píng):本題考查棱錐的體積與側(cè)面積的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)計(jì)一個(gè)小型正四棱錐形冷水塔,其中頂點(diǎn)P在底面的射影為正方形ABCD的中心O,返水口E為BC的中點(diǎn),冷水塔的四條鋼梁(側(cè)棱)設(shè)計(jì)長(zhǎng)度均為10米.冷水塔的側(cè)面選用鋼板,基于安全與冷凝速度的考量,要求鋼梁(側(cè)棱)與底面的夾角α落在區(qū)間[
π
6
,
π
3
]
內(nèi),如何設(shè)計(jì)可得側(cè)面鋼板用料最省且符合施工要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省煙臺(tái)市萊州一中高三第三次質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第七學(xué)段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱(底面是正方形的直棱柱)形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形HEF斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.

(1)請(qǐng)用分別表示|GE|、|EH|的長(zhǎng)

(2)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?

H

 
(3)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三下學(xué)期開學(xué)檢測(cè)文科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.

(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?

(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案