【題目】已知數(shù)列滿足,若為單調(diào)遞增的等差數(shù)列,其前項(xiàng)和為,則__________;若為單調(diào)遞減的等比數(shù)列,其前項(xiàng)和為,則__________.
【答案】370 6
【解析】
(1)為單調(diào)遞增的等差數(shù)列,則公差.由數(shù)列滿足,,可得,,可得,為一元二次方程的兩個(gè)實(shí)數(shù)根,且,解得再利用通項(xiàng)公式與求和公式即可得出.②設(shè)等比數(shù)列的公比為,根據(jù)已知可得,是一元二次方的兩個(gè)實(shí)數(shù)根,又為單調(diào)遞減的等比數(shù)列,可得,.再利用通項(xiàng)公式與求和公式即可得出.
①為單調(diào)遞增的等差數(shù)列,則公差.
數(shù)列滿足,,
,,
則,為一元二次方程的兩個(gè)實(shí)數(shù)根,且,
解得,,
可得,,解得.
.
②設(shè)等比數(shù)列的公比為,數(shù)列滿足,,
,是一元二次方程的兩個(gè)實(shí)數(shù)根,
又為單調(diào)遞減的等比數(shù)列,,.
,解得.
,解得.
,解得.
故答案為:(1). 370 (2). 6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6cm,如不計(jì)容器的厚度,則球的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢驗(yàn)設(shè)備M與設(shè)備N的生產(chǎn)效率,研究人員作出統(tǒng)計(jì),得到如下表所示的結(jié)果,則
設(shè)備M | 設(shè)備N | |
生產(chǎn)出的合格產(chǎn)品 | 48 | 43 |
生產(chǎn)出的不合格產(chǎn)品 | 2 | 7 |
附:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:,其中.
A. 有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)
B. 沒(méi)有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)
C. 可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)
D. 不能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:
①?gòu)?5種疫苗中抽取5種檢測(cè)是否合格.
②渦陽(yáng)縣某中學(xué)共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對(duì)學(xué)校校務(wù)公開(kāi)方面的意見(jiàn),擬抽取一個(gè)容量為20的樣本.
③渦陽(yáng)縣某中學(xué)報(bào)告廳有28排,每排有35個(gè)座位,一次報(bào)告會(huì)恰好坐滿了聽(tīng)眾,報(bào)告會(huì)結(jié)束后,為了聽(tīng)取意見(jiàn),需要請(qǐng)28名聽(tīng)眾進(jìn)行座談.
較為合理的抽樣方法是( )
A. ①簡(jiǎn)單隨機(jī)抽樣, ②系統(tǒng)抽樣, ③分層抽樣
B. ①簡(jiǎn)單隨機(jī)抽樣, ②分層抽樣, ③系統(tǒng)抽樣
C. ①系統(tǒng)抽樣, ②簡(jiǎn)單隨機(jī)抽樣, ③分層抽樣
D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡(jiǎn)單隨機(jī)抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬(wàn)元,每生產(chǎn)1千件需另投入2.7萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且.
(1)寫出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入﹣年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn},{cn}滿足 (n+1)bn=an+1﹣ ,(n+2)cn= ﹣ ,其中n∈N*.
(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項(xiàng)公式;
(2)若存在實(shí)數(shù)λ,使得對(duì)一切n∈N*,有bn≤λ≤cn , 求證:數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,點(diǎn)E是AB的中點(diǎn).
(1)求證:OE∥平面BCC1B1.
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn .
(1)求p2的值;
(2)證明:pn> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把圓分成個(gè)扇形,設(shè)用4種顏色給這些扇形染色,每個(gè)扇形恰染一種顏色,并且要求相鄰扇形的顏色互不相同,設(shè)共有種方法.
(1)寫出,的值;
(2)猜想 ,并用數(shù)學(xué)歸納法證明。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com