4.求證:$\frac{1+sinα}{1-sinα}$=($\frac{1}{cosα}$+tanα)2

分析 左邊=$\frac{(1+sinα)^2}{1-sin^2α}$=$\frac{1+sin2α}{cos^2α}$;右邊=($\frac{1}{cosα}$+$\frac{sinα}{cosα}$)2=($\frac{1+sinα}{cosα}$)2=$\frac{1+sin2α}{cos^2α}$.

解答 證明:左邊=$\frac{1+sinα}{1-sinα}$
=$\frac{(1+sinα)^2}{1-sin^2α}$=$\frac{1+2sinαcosα}{cos^2α}$
=$\frac{1+sin2α}{cos^2α}$,
右邊=($\frac{1}{cosα}$+tanα)2
=($\frac{1}{cosα}$+$\frac{sinα}{cosα}$)2=($\frac{1+sinα}{cosα}$)2
=$\frac{1+2sinαcosα}{cos^2α}$
=$\frac{1+sin2α}{cos^2α}$,
所以,左邊=右邊.

點(diǎn)評 本題主要考查了三函數(shù)恒等式的證明,涉及同角三角函數(shù)的基本關(guān)系,二倍角公式,靈活運(yùn)用公式進(jìn)行恒等變形是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,tanA=3,面積為10,D為邊BC上一動點(diǎn),CD=λDB.分別作邊AB,AC的垂線,垂足分別為E,F(xiàn),若$\overrightarrow{DE}$•$\overrightarrow{DF}$∈[-$\frac{4}{3}$,-$\frac{9}{8}$],則實(shí)數(shù)λ范圍為[$\frac{1}{3}$,$\frac{1}{2}$]∪[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.y=(sinx-1)2+2的值域為[2,6],當(dāng)y取最大值時,x=2kπ-$\frac{π}{2}$(k∈Z);當(dāng)y取最小值時,x=2kπ+$\frac{π}{2}$(k∈Z),周期為2π,單調(diào)遞增區(qū)間為[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z);單調(diào)遞減區(qū)間為[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若數(shù)列{an}的首項a1=2,an+1=(2+$\frac{2}{n}$)an,則an=n•2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)y=f(2-x)可導(dǎo),則y′等于( 。
A.f′(2-x)1n2B.2-x•f′(2-x)1n2C.-2-x•f′(2-x)1n2D.-2-x•f′(2-x)1og22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知△ABC中,a+b=10,c=6,∠C=60°,求三角形的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)A={x|1≤x≤10,x∈N},B={x|(x-1)2≤1},則A∩B={1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線S與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{34}$=1的焦點(diǎn)相同,如果y=$\frac{3}{4}$x是雙曲線S的一條漸近線,那么雙曲線S的方程為$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2x,x1,x2是任意實(shí)數(shù),且x1≠x2,證明$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}{+x}_{2}}{2}$)

查看答案和解析>>

同步練習(xí)冊答案