【題目】某工廠的某車間共有位工人,其中的人愛好運(yùn)動。經(jīng)體檢調(diào)查,這位工人的健康指數(shù)(百分制)如下莖葉圖所示。體檢評價(jià)標(biāo)準(zhǔn)指出:健康指數(shù)不低于者為“身體狀況好”,健康指數(shù)低于者為“身體狀況一般”。
(1)根據(jù)以上資料完成下面的列聯(lián)表,并判斷有多大把握認(rèn)為“身體狀況好與愛好運(yùn)動有關(guān)系”?
身體狀況好 | 身體狀況一般 | 總計(jì) | |
愛好運(yùn)動 | |||
不愛好運(yùn)動 | |||
總計(jì) |
(2)現(xiàn)將位工人的健康指數(shù)分為如下組:,,,,,其頻率分布直方圖如圖所示。計(jì)算該車間中工人的健康指數(shù)的平均數(shù),由莖葉圖得到真實(shí)值記為,由頻率分布直方圖得到估計(jì)值記為,求與的誤差值;
(3)以該車間的樣本數(shù)據(jù)來估計(jì)該廠的總體數(shù)據(jù),若從該廠健康指數(shù)不低于者中任選人,設(shè)表示愛好運(yùn)動的人數(shù),求的數(shù)學(xué)期望。
附:。
【答案】(1)列聯(lián)表見解析;有的把握認(rèn)為“身體狀況好與愛好運(yùn)動有關(guān)系”;(2)誤差值為;(3)數(shù)學(xué)期望
【解析】
(1)根據(jù)莖葉圖補(bǔ)全列聯(lián)表,計(jì)算可得,從而得到結(jié)論;(2)利用平均數(shù)公式求得真實(shí)值;利用頻率直方圖估計(jì)平均數(shù)的方法求得估計(jì)值,作差得到結(jié)果;(3)可知,利用二項(xiàng)分布數(shù)學(xué)期望計(jì)算公式求得結(jié)果.
(1)由莖葉圖可得列聯(lián)表如下:
身體狀況好 | 身體狀況一般 | 總計(jì) | |
愛好運(yùn)動 | |||
不愛好運(yùn)動 | |||
總計(jì) |
有的把握認(rèn)為“身體狀況好與愛好運(yùn)動有關(guān)系”
(2)由莖葉圖可得:真實(shí)值
由直方圖得:估計(jì)值
誤差值為:
(3)從該廠健康指數(shù)不低于的員工中任選人,愛好運(yùn)動的概率為:
則 數(shù)學(xué)期望
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域?yàn)?/span>的函數(shù),如果存在區(qū)間,同時(shí)滿足:①函數(shù)在區(qū)間內(nèi)是單調(diào)函數(shù);②當(dāng)定義域?yàn)?/span>時(shí),的值域也是,則稱是該函數(shù)的和諧區(qū)間.
(1)求證:函數(shù)不存在和諧區(qū)間;
(2)已知:函數(shù)有和諧區(qū)間,當(dāng)變化時(shí),求出的最大值;
(3)易知,函數(shù)是以任一區(qū)間為它的“和諧區(qū)間”,試再舉一例有和諧區(qū)間的函數(shù),并寫出它的個(gè)和諧區(qū)間(不需要證明,但是不能用本題已經(jīng)討論過的以及形如的函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國共產(chǎn)黨的十九大的到來,某校舉辦了“祖國,你好”的詩歌朗誦比賽.該校高三年級準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名同學(xué)中至少有1人參加,且當(dāng)這3名同學(xué)都參加時(shí),甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為“高消費(fèi)群” .
(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?
高消費(fèi)群 | 非高消費(fèi)群 | 合計(jì) | |
男 | |||
女 | 10 | 50 | |
合計(jì) |
(參考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓,是橢圓與軸的兩個(gè)交點(diǎn),為橢圓C的上頂點(diǎn),設(shè)直線的斜率為,直線的斜率為,.
(1)求橢圓的離心率;
(2)設(shè)直線與軸交于點(diǎn),交橢圓于、兩點(diǎn),且滿足,當(dāng)的面積最大時(shí),求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的焦距為4,且橢圓過點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與橢圓交于,兩點(diǎn),,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com