下列命題中正確的有______.
①?x∈R,使sinx+cosx=2;②對?x∈R,sinx+
1
sinx
≥2
;③對?x∈(0,
π
2
)
,tanx+
1
tanx
≥2
;④?x∈R,使sinx+cosx=
2
∵sinx+cosx=
2
sin(x+
π
4
)∈[-
2
,
2
];
故①?x∈R,使sinx+cosx=2錯誤;
④?x∈R,使sinx+cosx=
2
正確;
sinx+
1
sinx
≥2
sinx+
1
sinx
≤-2
,故②對?x∈R,sinx+
1
sinx
≥2
錯誤;
③對?x∈(0,
π
2
)
tanx>0,
1
tanx
>0
,由基本不等式可得③tanx+
1
tanx
≥2
正確;
故答案為:③④
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有
 
.(填寫所有正確命題的序號)
①在△ABC中,若A>B,則sinA>sinB;
②若△ABC為銳角三角形,則sinA>cosB;
③若數(shù)列{an}為等差數(shù)列,則數(shù)列an+2an+1仍為等差數(shù)列;
④若數(shù)列{an}為等比數(shù)列,則數(shù)列an+2an+1仍為等比數(shù)列;
⑤當(dāng)x∈(0,
π
2
]
時,y=sinx+
2
sinx
的最小值是2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有
 
.(填上所有正確命題的序號)
①若f(x)可導(dǎo)且f'(x0)=0,則x0是f(x)的極值點;
②函數(shù)f(x)=xe-x,x∈[2,4]的最大值為2e-2;
③已知函數(shù)f(x)=
-x2+2x
,則_1f(x)dx的值為
π
4
;
④一質(zhì)點在直線上以速度v=t2-4t+3(m/s)運動,從時刻t=0(s)到t=4(s)時質(zhì)點運動的路程為
4
3
(m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、n為兩條不同直線,α、β為兩個不重合的平面,給出下列命題中正確的有( 。
m⊥α
m⊥n
⇒n∥α
;
m⊥β
n⊥β
⇒m∥n
;
m⊥α
m⊥β
⇒α∥β
;
m?α
n?α
α∥β
⇒m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有
(3)(5)
(3)(5)
(填正確命題的序號).
(1)空集是任意集合的真子集;
(2)若f(1)+f(-1)=0,則函數(shù)f(x)是奇函數(shù);
(3)函數(shù)y=(
1
2
)-x
 的反函數(shù)為y=log2x;
(4)函數(shù)y=f(x)是區(qū)間(a,b)上的增函數(shù),則函數(shù)y=2012f(x)-
2012
f(x)
也是區(qū)間(a,b) 上的增函數(shù);
(5)若函數(shù)f (x)滿足f(-x)=f(x),且當(dāng)x∈[0,+∞)時f(x)=x2+2x-2,則關(guān)于x不等式f(x-1)<1的解集為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有
③④
③④
.(填上所有正確命題的序號)
①若f'(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
②若∫abf(x)dx>0,則f(x)>0在[a,b]上恒成立;
③已知函數(shù)f(x)=
-x2+2x
,則∫01f(x)dx的值為
π
4
;
④一質(zhì)點在直線上以速度v=t2-4t+3(m/s)運動,從時刻t=0(s)到t=4(s)時質(zhì)點運動的位移為
4
3
(m)

查看答案和解析>>

同步練習(xí)冊答案