如圖,四面體ABCD中,O是BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=。
(1)求證:AO⊥平面BCD;
(2)求E到平面ACD的距離;
(3)求異面直線AB與CD所成角的余弦值。
(1)見(jiàn)解析(2)略(3)
【解析】本題考查點(diǎn)、線、面間的距離的計(jì)算,考查空間想象力和等價(jià)轉(zhuǎn)化能力,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意化立體幾何問(wèn)題為平面幾何問(wèn)題.
(1)連接OC,由BO=DO,AB=AD,知AO⊥BD,由BO=DO,BC=CD,知CO⊥BD.在△AOC中,由題設(shè)知AO=1,CO= 3,AC=2,故AO2+CO2=AC2,由此能夠證明AO⊥平面BCD.
(2)利用等體積法得到點(diǎn)到面的距離的求解。
(3)取AC的中點(diǎn)M,連接OM、ME、OE,由E為BC的中點(diǎn),知ME∥AB,OE∥DC,故直線OE與EM所成的銳角就是異面直線AB與CD所成的角.在△OME中,EM=1能求出異面直線AB與CD所成角大小的余弦.
解:(1)證明:在三角形ABC中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090811301016466212/SYS201209081130323908977321_DA.files/image002.png">,O是BD中點(diǎn),
所以AO⊥BD,且 ------------------2分
連結(jié)CO,在等邊三角形BCD中易得,
所以
所以AO⊥CO -----------------4分
因?yàn)镃O∩BD=O,CO、BD平面BCD
所以AO⊥平面BCD ---------------------6分
(3)分別取BC、AC的中點(diǎn)E、F,連結(jié)EF、EG
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090811301016466212/SYS201209081130323908977321_DA.files/image008.png">
所以∠FEO或其補(bǔ)角就是異面直線AB、CD所成的角---------8分
連結(jié)FO,因?yàn)锳O⊥平面BCD,所以AO⊥CO,
所以在Rt△ACO中,斜邊AC上的中線,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090811301016466212/SYS201209081130323908977321_DA.files/image010.png">,
所以在△EFO中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090811301016466212/SYS201209081130323908977321_DA.files/image012.png">>0,所以異面直線AB、CD所成的角的余弦值是---------14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com