分析 (Ⅰ)設(shè)直線AB方程為x=my+b,將直線AB方程代入拋物線方程y2=4x,得y2-4my-4b=0,利用韋達(dá)定理,結(jié)合直線垂直的條件,能夠證明直線AB過定點(diǎn)(4,0).
(Ⅱ)當(dāng)$\overrightarrow{OQ}•\overrightarrow{AB}=0$時(shí),建立方程,即可求動(dòng)點(diǎn)Q的軌跡方程.
解答 (Ⅰ)證明:設(shè)直線AB方程為x=my+b,A(x1,y1),B(x2,y2),
將直線AB方程代入拋物線方程y2=4x,
得y2-4my-4b=0,
則y1+y2=4m,y1y2=-4b,
∵OA⊥OB,∴kOA•kOB=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{16}{{y}_{1}{y}_{2}}$=-$\frac{4}$=-1,b=4.
于是直線AB方程為x=my+4,該直線過定點(diǎn)(4,0),即點(diǎn)A,B,C共線;
(Ⅱ)解:由題意,Q是直角三角形AOB斜邊上的垂足,∠CQO=90°.
設(shè)Q(x,y),則$\overrightarrow{OQ}$=(x,y),$\overrightarrow{CQ}$=(x-4,y),
∴x(x-4)+y2=0,即(x-2)2+y2=4(x≠0).
點(diǎn)評(píng) 本題考查軌跡方程,考查A,B,C共線的證明,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $2\sqrt{5}$ | C. | 6 | D. | $3\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
手機(jī)編號(hào) | 1 | 2 | 3 | 4 | 5 |
A型待機(jī)時(shí)間(h) | 120 | 125 | 122 | 124 | 124 |
B型待機(jī)時(shí)間(h) | 118 | 123 | 127 | 120 | a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16+4π | B. | 16+2π | C. | 48+4π | D. | 48+2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com