如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F(xiàn)分別為PC,BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=AD.

(Ⅰ)求證:EF//平面PAD;

(Ⅱ)求三棱錐C—PBD的體積.

 

【答案】

(Ⅰ)證明見解析   (Ⅱ)P

【解析】本試題主要是考查了線面平行的判定和三棱錐體積的求解的綜合問題。培養(yǎng)了同學(xué)們的推理論證能力和計算能力。

(1)根據(jù)已知的條件關(guān)鍵是分析出EF//PA,利用線面平行判定定理得到

(2)根據(jù)上一問中的結(jié)論可知PM⊥平面ABCD.然后利用轉(zhuǎn)換頂點的思想求解棱錐的體積。解:(Ⅰ)證明:連接AC,則F是AC的中點,

E為PC的中點,故在CPA中,EF//PA,

且PA平面PAD,EF平面PAD,∴EF//平面PAD

(Ⅱ)取AD的中點M,連接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,

平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.

在直角PAM中,求得PM=,∴P

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點A到平面PBD的距離;
(2)求θ的大。划(dāng)平面ABCD內(nèi)有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案