【題目】某顏料公司生產(chǎn) 兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果產(chǎn)品的利潤為300元/噸, 產(chǎn)品的利潤為200元/噸,則該顏料公司一天之內(nèi)可獲得最大利潤為( )
A. 14000元 B. 16000元 C. 18000元 D. 20000元
【答案】A
【解析】依題意,將題中數(shù)據(jù)統(tǒng)計如下表所示:
設(shè)該公司一天內(nèi)安排生產(chǎn)產(chǎn)品噸, 產(chǎn)品噸,所獲利潤為元.依據(jù)題意得目標(biāo)函數(shù)為,約束條件為欲求目標(biāo)函數(shù)的最大值,先畫出約束條件表示的可行域,如圖中陰影部分所示,則點, , , , 作直線,當(dāng)移動該直線過點時, 取得最大值,則也取得最大值(也可通過代入凸多邊形端點進(jìn)行計算,比較大小求得).故,所以工廠每天生產(chǎn)產(chǎn)品40噸, 產(chǎn)品10噸時,才可獲得最大利潤,為14000元.選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.
(1)求取出的兩個球上標(biāo)號為相同數(shù)字的概率;
(2)求取出的兩個球上標(biāo)號之積能被3整除的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于維向量,若對任意均有或,則稱為維向量. 對于兩個維向量定義.
(1)若, 求的值;
(2)現(xiàn)有一個維向量序列: 若且滿足: ,求證:該序列中不存在維向量.
(3) 現(xiàn)有一個維向量序列: 若且滿足: ,若存在正整數(shù)使得為維向量序列中的項,求出所有的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|,當(dāng)P在圓上運動時,求點M的軌跡C的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1= ,a1=1,n∈N* .
(1)求a2 , a3 , a4的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了制定治理學(xué)校門口上學(xué)、放學(xué)期間家長接送孩子亂停車現(xiàn)象的措施,對全校學(xué)生家長進(jìn)行了問卷調(diào)查,根據(jù)從其中隨機抽取的50份調(diào)查問卷,得到了如下的列聯(lián)表.
同意限定區(qū)域停車 | 不同意限定區(qū)域停車 | 合計 | |
男 | 18 | 7 | 25 |
女 | 12 | 13 | 25 |
合計 | 30 | 20 | 50 |
(1)學(xué)校計劃在同意限定區(qū)域停車的家長中,按照分層抽樣的方法,隨機抽取5人在上學(xué)、放學(xué)期間在學(xué)校門口參與維持秩序,在隨機抽取的5人中,選出2人擔(dān)任召集人,求至少有一名女性的概率?
(2)已知在同意限定區(qū)域停車的12位女性家長中,有3位日常開車接送孩子,現(xiàn)從這12位女性家長中隨機抽取3人參與維持秩序,記參與維持秩序的女性家長中,日常開車接送孩子的女性家長人數(shù)為,求 的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=sin2(2x﹣ )﹣2tsin(2x﹣ )+t2﹣6t+1(x∈[ , ])其最小值為g(t).
(1)求g(t)的表達(dá)式;
(2)當(dāng)﹣ ≤t≤1時,要使關(guān)于t的方程g(t)=kt有一個實根,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為直角坐標(biāo)系的坐標(biāo)原點,雙曲線 上有一點(),點在軸上的射影恰好是雙曲線的右焦點,過點作雙曲線兩條漸近線的平行線,與兩條漸近線的交點分別為, ,若平行四邊形的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com