設(shè)f(x)=,且f(x)=x有唯一解,f(x1)=,xn+1=f(xn)(n∈N*).
(1)求實數(shù)a;
(2)求數(shù)列{xn}的通項公式;
(3)若an=-4009,bn=(n∈N*),求證:b1+b2+…+bn<n+1.
科目:高中數(shù)學(xué) 來源:內(nèi)蒙古包頭一中2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044
設(shè)f(x)=,且f(x)的圖象過點()
(1)求f(x)表達(dá)式
(2)計算f(x)+f(1-x)
(3)試求f()+f()+f()+…+f()+f()的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省新建二中2010屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:013
設(shè)f(x)是定義在R上以6為周期的函數(shù),f(x)在(0,3)內(nèi)單調(diào)遞減,且y=f(x)的圖像關(guān)于直線x=3對稱,則下面正確的結(jié)論是
A.f(1.5)<f(3.5)<f(6.5)
B.f(3.5)<f(1.5)<f(6.5)
C.f(6.5)<f(3.5)<f(1.5)
D.f(3.5)<f(6.5)<f(1.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省杭州市2010屆高三科目教學(xué)質(zhì)量檢測數(shù)學(xué)理科試題 題型:044
設(shè)f(x)=λ1(x2+x)+λ2x·3x(a,b∈R,a>0)
(1)當(dāng)λ1=1,λ2=0時,設(shè)x1,x2是f(x)的兩個極值點,
①如果x1<1<x2<2,求證:(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)時,函數(shù)g(x)=(x)+2(x-x2)的最小值為h(a),求h(a)的最大值.
(2)當(dāng)λ1=0,λ2=1時,
①求函數(shù)y=f(x)-3(ln3+1)x的最小值.
②對于任意的實數(shù)a,b,c,當(dāng)a+b+c=3時,求證3aa+3bb+3cc≥9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com