【題目】如圖幾何體中,等邊三角形所在平面垂直于矩形所在平面,又知,//.
(1)若的中點為,在線段上,//平面,求;
(2)若平面與平面所成二面角的余弦值為,求直線與平面所成角的正弦值;
(3)若中點為,,求在平面上的正投影。
【答案】(1);(2);(3)在平面上的正投影為.
【解析】
(1)設(shè)的中點,可得四點共面,從而可證得,即得,即可得解;
(2)設(shè)的中點為,可證得兩兩垂直,設(shè),分別以為軸建立空間直角坐標系,利用法向量計算二面角列方程可得,從而再利用空間向量建立線面角的公式求解即可;
(3)由平面,可證得,再通過勾股定理在中,可證得,進而可找到在平面上的正投影為.
(1)設(shè)的中點,連接,因為;
所以四點共面,
又因為平面,面,平面平面
所以;
所以.
(2)設(shè)的中點為,的中點為,連接;因為為等邊三角形,所以
又因為平面平面,平面平面,
所以面
設(shè),分別以為軸建立空間直角坐標系,則
,,,,
則,
設(shè)為平面的法向量,
則,;得,,
所以.
同理得平面的法向量
所以,,
所以
又因為,所以
(3)由(2)知易證:平面,所以
又因為,所以
又因為在中, ,,,
所以,
所以平面,所以在平面上的正投影為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b= ,求△ABC面積的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ , ))的一條對稱軸為x= ,一個對稱中心為( ,0),在區(qū)間[0, ]上單調(diào).
(1)求ω,φ的值;
(2)用描點法作出y=sin(ωx+φ)在[0,π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2sin(2x+ ),若將它的圖象向右平移 個單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)圖象的一條對稱軸的方程為( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ax-x2-3ln x,其中a∈R,為常數(shù).
(1)若f(x)在x∈[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xea﹣x+bx,曲線y=f(x)在點(2,f(2))處的切線方程為y=(e﹣1)x+4,
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓: (a>b>0),左右焦點分別是F1 , F2 , 焦距為2c,若直線 與橢圓交于M點,滿足∠MF1F2=2∠MF2F1 , 則離心率是( )
A.
B. -1
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com