如圖,若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=
7
7
分析:以P為圓心,以PA=PB為半徑作圓,延長BD交圓于M,如圖,證明C在圓上,利用AD•DC=BD•DM來求出它的值.
解答:解:以P為圓心,以PA=PB為半徑作圓,延長BD交圓于M,如圖:PA=PB=4,∠APB=2∠ACB,AC與PB交于點D,PD=3,
設(shè)∠ACB=θ,則∠APB=2θ,又∠ACB=θ,∴C在圓上.
∴AD•DC=BD•DM=BD•(PM+PD)=1•(4+3)=7,
故答案為 7.
點評:本題主要考查四點共圓的性質(zhì)與相似三角形的性質(zhì),屬于中等題.溫馨提示:四點共圓時四邊形對角互補,圓與三角形綜合問題是高考中平面幾何選講的重要內(nèi)容,也是考查的熱點.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(幾何證明選做題)
如圖,若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=
7
7

(B)(極坐標系與參數(shù)方程選做題)
若直線l:x-
3
y=0
與曲線C:
x=a+
2
cos?
y=
2
sin?
(?
為參數(shù),a>0)有兩個公共點A、B,且|AB|=2,則實數(shù)a的值為
2
2

(C)(不等式選做題)
不等式|2x-1|-|x-2|<0的解集為
.
x 
  
.
-1<x<1
.
x 
  
.
-1<x<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題(請考生在三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分).
(A)(坐標系與參數(shù)方程) 在極坐標系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標方程為
ρcosθ=3
ρcosθ=3

(B)(不等式選講)已知關(guān)于x的不等式|x+a|+|x-1|+a<2011(a是常數(shù))的解是非空集合,則a的取值范圍
a<1005
a<1005

(C)(幾何證明選講)如圖:若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=
7
7

查看答案和解析>>

科目:高中數(shù)學 來源:2011年陜西省西安市西工大附中高考數(shù)學六模試卷(解析版) 題型:填空題

選做題(請考生在三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分).
(A)(坐標系與參數(shù)方程) 在極坐標系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標方程為   
(B)(不等式選講)已知關(guān)于x的不等式|x+a|+|x-1|+a<2011(a是常數(shù))的解是非空集合,則a的取值范圍   
(C)(幾何證明選講)如圖:若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市八校高三5月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:填空題

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(幾何證明選做題)
如圖,若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=   
(B)(極坐標系與參數(shù)方程選做題)
若直線與曲線為參數(shù),a>0)有兩個公共點A、B,且|AB|=2,則實數(shù)a的值為   
(C)(不等式選做題)
不等式|2x-1|-|x-2|<0的解集為   

查看答案和解析>>

同步練習冊答案