(2013•浙江)如圖,點P(0,﹣1)是橢圓C1+=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.
(1)      (2)
(1)由題意可得b=1,2a=4,即a=2.
∴橢圓C1的方程為;
(2)設(shè)A(x1,y1),B(x2,y2),D(x0,y0).
由題意可知:直線l1的斜率存在,設(shè)為k,則直線l1的方程為y=kx﹣1.
又圓的圓心O(0,0)到直線l1的距離d=
∴|AB|==
又l2⊥l1,故直線l2的方程為x+ky+k=0,聯(lián)立,消去y得到(4+k2)x2+8kx=0,解得,

∴三角形ABD的面積
=,當(dāng)且僅當(dāng)時取等號,
故所求直線l1的方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點P是橢圓C的“準(zhǔn)圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與橢圓相切,且該切點與橢圓的兩焦點構(gòu)成的三角形面積為2,則橢圓的離心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個焦點恰好與拋物線的焦點重合.
求橢圓的方程;
設(shè)橢圓的上頂點為,過點作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知中心在原點的橢圓的右焦點為,離心率等于,則橢圓的方程是(    ) 
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2分別是橢圓(a>b>0)的左、右焦點,若在直線x=上存在P,使線段PF1的中垂線過點F2,則橢圓離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓上的動點,點D是P在軸上投影,M為PD上一點,且

(1)當(dāng)P在圓上運動時,求點M的軌跡C的方程;
(2)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間上分別取一個數(shù),記為,則方程,表示焦點在y軸上的橢圓的概率是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左、右焦點分別為,點M在該橢圓上,且,則點M到y(tǒng)軸的距離為(   )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案