若方程x2-2x-m=0在-1≤x≤1上有解,則實(shí)數(shù)m的取值范圍為
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:若方程x2-2x-m=0在-1≤x≤1上有解,即函數(shù)f(x)=x2-2x-m在區(qū)間[-1,1]上有零點(diǎn),根據(jù)零點(diǎn)存在定理構(gòu)造關(guān)于m的不等式,解不等式可得答案.
解答: 解:令f(x)=x2-2x-m,則函數(shù)的圖象是開口朝上且以直線x=1為對(duì)稱軸的拋物線,
故f(x)=x2-2x-m在區(qū)間[-1,1]上為單調(diào)函數(shù),
若方程x2-2x-m=0在-1≤x≤1上有解,
即函數(shù)f(x)=x2-2x-m在區(qū)間[-1,1]上有零點(diǎn),
即f(-1)•f(1)=(3-m)(-1-m)≤0
解得-1≤m≤3
故實(shí)數(shù)m的取值范圍為:[-1,3]
故答案為:[-1,3]
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),函數(shù)的零點(diǎn)與方程根的關(guān)系,其中分析出函數(shù)在給定區(qū)間上的單調(diào)性是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、6
B、2
3
C、3
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓5x2+9y2=45,橢圓的右焦點(diǎn)為F,
(1)求過(guò)點(diǎn)F且斜率為1的直線被橢圓截得的弦長(zhǎng);
(2)判斷點(diǎn)A(1,1)與橢圓的位置關(guān)系,并求以A為中點(diǎn)橢圓的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,已知AB=4,AD=2,PA=2,PD=2
2
,∠PAB=60°
(Ⅰ)證明AD⊥PB;
(Ⅱ)求二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)同時(shí)滿足下列條件:
(1)y=f(x)是二次函數(shù);
(2)f(-2014)=f(2022);
(3)函數(shù)g(x)=f(x)+x2+4x+5是R上的單調(diào)函數(shù).
則滿足上述要求的函數(shù)f(x)可以是
 
.(寫出一個(gè)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
(1)命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
(2)關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
(3)對(duì)于函數(shù)f(x)=
ax
1+|x|
(a∈R且a≠0)
,則有當(dāng)a=1時(shí),?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn);
(4)已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,n>m
,且m,n是常數(shù),又s+2t的最小值是1,則m+3n=7.
其中正確的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-x2+ax-b,a、b∈[0,4],a、b∈R,則f(1)>0的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=
|x|
|x|-1
給出下列四個(gè)命題:
①當(dāng)x>0時(shí),y=f(x)單調(diào)遞減且沒有最值;
②方程f(x)=kx+b(k≠0)一定有解;
③如果方程f(x)=k有解,則解的個(gè)數(shù)一定是偶數(shù);
④y=f(x)是偶函數(shù)且有最小值.則其中真命題是
 
.(只要寫標(biāo)題號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC內(nèi)一點(diǎn),若
OA
+2
OB
+3
OC
=
0
,則△AOC與△ABC的面積的比值為( 。
A、
1
2
B、
1
5
C、
1
3
D、
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案