【題目】已知橢圓C:x2+4y2=4.
(1)求橢圓C的離心率;
(2)橢圓C的長軸的兩個端點分別為A,B,點P在直線x=1上運動,直線PA,PB分別與橢圓C相交于M,N兩個不同的點,求證:直線MN與x軸的交點為定點.

【答案】
(1)解:由橢圓的標準方程:

則a=2,b=1,則c=

∴橢圓的離心率e= =


(2)證明:∵橢圓C的左,右頂點分別為A,B,點P是直線x=1上的動點,

∴A(﹣2,0),B(2,0),設P(1,t),

則kPA= = ,直線PA:y= (x+2),

聯(lián)立得: 整理,得(4t2+9)x2+16t2x+16t2﹣36=0,

﹣2xM= ,則xM= ,yM= (xM+2)=

則M( , ),

同理得到N( ,

由橢圓的對稱性可知這樣的定點在x軸,

不妨設這個定點為Q(m,0),

又kMQ= ,kNQ= ,

∵kMQ=kNQ,

∴(8m﹣32)t2﹣6m+24=0,m=4.

∴直線MN經(jīng)過一定點Q(4,0),

直線MN與x軸的交點為定點Q(4,0).


【解析】(1)求得橢圓的標準方程,則a=2,b=1,則c= ,利用橢圓的離心率公式,即可求得橢圓C的離心率;(2)設P(1,t),由已知條件分別求出M,N的坐標,設定點為Q,再由kMQ=kNQ,能證明直線MN經(jīng)過一定點Q(4,0).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選課意向進行調查(調查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調查結果如下.圖中,課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學類課程.為進一步研究學生選課意向,結合上面圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學營活動,學校要求:參加活動的學生只能是“組M”中選擇F課程或G課程的同學,并且這些同學以自愿報名繳費的方式參加活動.選擇F課程的學生中有x人參加科學營活動,每人需繳納2000元,選擇G課程的學生中有y人參加該活動,每人需繳納1000元.記選擇F課程和G課程的學生自愿報名人數(shù)的情況為(x,y),參加活動的學生繳納費用總和為S元.
(。┊擲=4000時,寫出(x,y)的所有可能取值;
(ⅱ)若選擇G課程的同學都參加科學營活動,求S>4500元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調遞增,求實數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線,求a+b的最小值;
(3)當b=0時,若f(x)與g(x)的圖象有兩個交點A(x1 , y1),B(x2 , y2),求證:x1x2>2e2
(取e為2.8,取ln2為0.7,取 為1.4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中.點M不與點O重合,稱射線OM與圓x2+y2=1的交點N為點M的“中心投影點“. ⑴點M(1, )的“中心投影點”為
⑵曲線x2 上所有點的“中心投影點”構成的曲線的長度是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,他在《數(shù)學九章》中提出的多項式的秦九韶算法,至今仍是比較先進的算法,如圖是事項該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為(
A.5
B.12
C.25
D.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點,D與F分別為線段AC和AB上的動點(不包括端點),若GD⊥EF,則線段DF的長度的取值范圍為(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,頂角D1在底面ABCD內的射影恰好為點C.
(1)求證:AD1⊥BC;
(2)若直線DD1與直線AB所成角為 ,求平面ABC1D1與平面ABCD所成角(銳角)的余弦值函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設x,y∈R,定義xy=x(a﹣y)(a∈R,且a為常數(shù)),若f(x)=ex , g(x)=e﹣x+2x2 , F(x)=f(x)g(x).
①g(x)不存在極值;
②若f(x)的反函數(shù)為h(x),且函數(shù)y=kx與函數(shù)y=|h(x)|有兩個交點,則k= ;
③若F(x)在R上是減函數(shù),則實數(shù)a的取值范圍是(﹣∞,﹣2];
④若a=﹣3,在F(x)的曲線上存在兩點,使得過這兩點的切線互相垂直.
其中真命題的序號有 . (把所有真命題序號寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某油庫的設計容量是30萬噸,年初儲量為10萬噸,從年初起計劃每月購進石油m萬噸,以滿足區(qū)域內和區(qū)域外的需求,若區(qū)域內每月用石油1萬噸,區(qū)域外前x個月的需求量y(萬噸)與x的函數(shù)關系為y= (p>0,1≤x≤16,x∈N*),并且前4個月,區(qū)域外的需求量為20萬噸.
(1)試寫出第x個月石油調出后,油庫內儲油量M(萬噸)與x的函數(shù)關系式;
(2)要使16個月內每月按計劃購進石油之后,油庫總能滿足區(qū)域內和區(qū)域外的需求,且每月石油調出后,油庫的石油剩余量不超過油庫的容量,試確定m的取值范圍.

查看答案和解析>>

同步練習冊答案