△ABC的兩個(gè)頂點(diǎn)為A(-4,0),B(4,0),△ABC周長為18,則C點(diǎn)軌跡為(    )

A.(y≠0)               B. (y≠0)

C.  (y≠0)              D.  (y≠0)

 

【答案】

A

【解析】A(-4,0),B(4,0),△ABC周長為18,所以,C點(diǎn)軌跡為以A、B為焦點(diǎn)的橢圓上(出去長軸的兩個(gè)端點(diǎn)),,,,b=3,方程為 (y≠0)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以等腰直角△ABC的兩個(gè)頂點(diǎn)為焦點(diǎn),并且經(jīng)過另一頂點(diǎn)的橢圓的離心率為( 。
A、
2
2
B、
3
2
C、
2
2
2
-1
D、
2
2
3
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以等腰直角△ABC的兩個(gè)頂點(diǎn)為焦點(diǎn),且經(jīng)過第三個(gè)頂點(diǎn)的雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)為B(-2,0),C(2,0),周長為12.
(1)求頂點(diǎn)A的軌跡G方程;
(2)若直線y=
12
x
與點(diǎn)A的軌跡G交于M、N兩點(diǎn),求△BMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)為A(0,-1),B(0,1)平面內(nèi)兩點(diǎn)G、M同時(shí)滿足①
GA
+
GB
+
GC
=
0
,②|
MA
|
=|
MB
|
=|
MC
|
,③
GM
AB

(1)求頂點(diǎn)C的軌跡E的方程
(2)設(shè)P、Q、R、N都在曲線E上,定點(diǎn)F的坐標(biāo)為(
2
,0),已知
PF
FQ
,
RF
FN
PF
RF
=0.求四邊形PRQN面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)為A(0,-l),B(0,1),平面內(nèi)兩點(diǎn)G,M同時(shí)滿足:①
OC
=3
OG
(O為坐標(biāo)原點(diǎn));②|
MA
|=|
MB
|=|
MC
|
;③
GM
AB

(1)求頂點(diǎn)C的軌跡E的方程;
(2)直線l:y=x+t與曲線E交于P,Q兩點(diǎn),求四邊形PAQB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案