求函數(shù)f(x)=x3+1,在點P(1,m)處的切線方程.
分析:先根據(jù)切點在曲線上求出m的值,然后利用導(dǎo)數(shù)的幾何意義求出在x=1處的導(dǎo)數(shù)即為切線的斜率,從而求出切線方程.
解答:解:∵點P(1,m)為切點
∴f(1)=2=m
∴P (1,2)
∵y'=3x2
∴y'|x=1=3,切點為(1,2)
∴函數(shù)f(x)=x3+1在點(1,2)切線方程為y=3x-1
即切線方程:3x-y-1=0
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,考查運算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在R上的函數(shù)f(x),可以證明點A(m,n)是f(x)圖象的一個對稱點的充要條件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個對稱點;
(2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
(3)試寫出函數(shù)y=f(x)的圖象關(guān)于直線X=M對稱的充要條件(不用證明);利用所學(xué)知識,研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對稱性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=
1
(1-3x)4
的導(dǎo)數(shù).
(2)求函數(shù)f(x)=
x3,x∈[0,1]
x2,x∈(1,2]
2x,x∈(2,3]
在區(qū)間[0,3]上的積分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為常數(shù),求函數(shù)f(x)=x3-3ax(0≤x≤1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x3-12x+8在區(qū)間[-3,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)求函數(shù)f(x)=x3-2x2+5在區(qū)間[-2,2]上的最值.

查看答案和解析>>

同步練習(xí)冊答案