【題目】設(shè),是函數(shù)的圖象上任意兩點,若為,的中點,且的橫坐標(biāo)為.
(1)求;
(2)若,,求;
(3)已知數(shù)列的通項公式(,),數(shù)列的前項和為,若不等式對任意恒成立,求的取值范圍.
【答案】(1)2;(2);(3).
【解析】
試題(1)根據(jù)中點坐標(biāo)公式可知,所以,
,整理即可求得的值;(2)由第(1)問可知當(dāng)時,為定值,觀察可知共項,根據(jù)倒序相加法可知,,,和均為定值2,共個2,所以和為,即得到的值;(3)由可知,為等差數(shù)列乘等比數(shù)列,所以求數(shù)列的前n項和采用錯位相減法,然后代入整理得到恒成立,所以只需,因此根據(jù)數(shù)列的單調(diào)性求出的最大值即可.本題以函數(shù)為背景,旨在考查數(shù)列的相關(guān)知識,考查倒序相加求和,錯位相減求和,同時還考查不等式恒成立問題.綜合性較強,考查學(xué)生對知識總體的把握能力.
試題解析:(1)由已知點M為線段AB的中點, 則:
∴
(2)由(1),當(dāng)時,有
故
∴
(3)由已知:
不等式即
也即,即恒成立
故只需
令
當(dāng)時,
當(dāng)時,,當(dāng)時,
故;
故
∴,解得:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓長軸的兩個端點分別為,, 離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)作一條垂直于軸的直線,使之與橢圓在第一象限相交于點,在第四象限相交于點,若直線與直線相交于點,且直線的斜率大于,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè).
(1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;
(2)若的最小正周期為,且當(dāng)時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進行檢測,現(xiàn)在某條生產(chǎn)線上隨機抽取100個產(chǎn)品進行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機抽取5個產(chǎn)品,再從這5個產(chǎn)品中隨機抽取2個產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個產(chǎn)品中恰有一個一等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列與正項數(shù)列的前項和分別為和,且對任意,恒成立.
(1)若,求數(shù)列的通項公式;
(2)在(1)的條件下,若,求;
(3)若對任意,恒有及成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果不是等差數(shù)列,但若,使得,那么稱為“局部等差”數(shù)列.已知數(shù)列的項數(shù)為4,記事件:集合,事件:為“局部等差”數(shù)列,則條件概率( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com