【題目】已知函數(shù)
(1)求函數(shù)f(x)的周期以及單調(diào)遞增區(qū)間;
(2)在給出的直角坐標(biāo)系中,請(qǐng)用五點(diǎn)作圖法畫出f(x)在區(qū)間[0,π]上的圖象.

【答案】解:(1)∵;
∴f(x)的周期T==π,由2kπ﹣≤2x﹣≤2kπ+,k∈Z,即可解得單調(diào)遞增區(qū)間為:[kπ﹣,kπ+],k∈Z,
(2)列表如下:

2x﹣

x

0

π

y

0

2

0

﹣2

對(duì)應(yīng)的圖象如下:

【解析】(1)根據(jù)周期公式可求周期,由三角函數(shù)的單調(diào)性的性質(zhì)即可求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)列表,描點(diǎn),連線即可利用“五點(diǎn)作圖法”畫出函數(shù)y=f(x)在[0,π]上的圖象.
【考點(diǎn)精析】關(guān)于本題考查的五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,需要了解描點(diǎn)法及其特例—五點(diǎn)作圖法(正、余弦曲線),三點(diǎn)二線作圖法(正、余切曲線)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市文化部門為了了解本市市民對(duì)當(dāng)?shù)氐胤綉蚯欠裣矏,?5-65歲的人群中隨機(jī)抽樣了人,得到如下的統(tǒng)計(jì)表和頻率分布直方圖.

(1)寫出其中的值;

(2)若從第1,2,3,組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?

(3)在(2)抽取的6人中隨機(jī)抽取2人,求抽取的2人年齡都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,空間幾何體中,四邊形是梯形,四邊形是矩形,且平面平面, , , 是線段上的動(dòng)點(diǎn).

(1)求證: ;

(2)試確定點(diǎn)的位置,使平面,并說明理由;

(3)在(2)的條件下,求空間幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓

1)過點(diǎn)的圓的切線只有一條,求的值及切線方程;

2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 處取得極值,且,曲線處的切線與直線垂直.

(Ⅰ)求的解析式;

(Ⅱ)證明關(guān)于的方程至多只有兩個(gè)實(shí)數(shù)根(其中的導(dǎo)函數(shù), 是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , ,斜率為的直線過點(diǎn),且和以為圓相切.

(1)求圓的方程;

(2)在圓上是否存在點(diǎn),使得,若存在,求出所有的點(diǎn)的坐標(biāo);若不存在說明理由;

(3)若不過的直線與圓交于, 兩點(diǎn),且滿足 , 的斜率依次為等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, , , 邊上的高,沿折起,使。

(Ⅰ)證明:平面平面;

(Ⅱ)的中點(diǎn),求與底面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個(gè)圓過直線與圓的兩個(gè)交點(diǎn),且面積最小,求此圓的方程;

(2)拋物線的頂點(diǎn)在原點(diǎn),以橢圓的右焦點(diǎn)為焦點(diǎn),過點(diǎn)的直線與拋物線有且僅有一個(gè)公共點(diǎn),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案