函數(shù)f(x)=4x-2x+1+5的值域為________.

[4,+∞)
分析:令t=2x(t>0),g(t)=t2-2t+5,通過配方法可求得函數(shù)f(x)=4x-2x+1+5的值域.
解答:∵f(x)=4x-2x+1+5,
∴令t=2x(t>0),
則g(t)=t2-2t+5=(t-1)2+4≥4(當(dāng)t=1,即x=0時取“=”).
∴函數(shù)f(x)=4x-2x+1+5的值域為[4,+∞).
故答案為:[4,+∞).
點評:本題考查二次函數(shù)的性質(zhì),著重考查換元法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x-k(x2+2clnx)(c>1,k∈R)有一個極值點是1.
(I)討論函數(shù)f(x)的單調(diào)性;
(II)當(dāng)c>1時,記f(x)的極大值為M(c),極小值為N(c),對于t∈R,問函數(shù)h(c)=M(c)-
1
2
N(c)-
2c+t
c+1
是否存在零點?若存在,請確定零點個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=4x+cosx,{an}是公差為
π
8
的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=10π,則[f(a3)]2-a1a5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2+4x-3
的定義域為M,函數(shù)f(x)=4x+a•2x+1+2(x∈M).
(1)當(dāng)a=1時,求函數(shù)f(x)的值域;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A={x∈R|-1≤log
13
x≤0},函數(shù)f(x)=4x-3m-2x+1+5(其中x∈A,m∈R)
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)函數(shù)f(x)=4x的反函數(shù)f-1(x)=
 

查看答案和解析>>

同步練習(xí)冊答案