【題目】已知橢圓的兩焦點(diǎn)為,,且橢圓上一點(diǎn),滿足,直線與橢圓交于兩點(diǎn),與軸、軸分別交于點(diǎn)、,且.

1)求橢圓的方程;

2)若,且,求的值;

3)當(dāng)△面積取得最大值,且點(diǎn)在橢圓上時(shí),求的值.

【答案】1233

【解析】

1)根據(jù)橢圓定義焦點(diǎn)坐標(biāo)計(jì)算基本量即可得解;

2)根據(jù)已知條件結(jié)合弦長(zhǎng)公式求得m,得出三點(diǎn)坐標(biāo),利用線段長(zhǎng)度公式得解;

3)聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理表示出三角形面積,根據(jù)基本不等式求最值,即可得到此時(shí)的值.

1)由題意可得,∴橢圓方程為

2)由題意得,此時(shí)直線方程為,將其代入橢圓方程整理可得

,其中

設(shè),則

,由橢圓具有對(duì)稱性,

∴不妨取,則,∴

3)將直線方程代入橢圓方程整理可得,其中

,設(shè)

,

原點(diǎn)到直線的距離,

,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

代入橢圓方程可得,

其中,,

∴整理得

再將代入,

整理得,

,

整理得,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓軸正半軸交于點(diǎn),與軸交于、兩點(diǎn).

1)求過、三點(diǎn)的圓的方程;

2)若為坐標(biāo)原點(diǎn),直線與橢圓和(1)中的圓分別相切于點(diǎn)和點(diǎn)、不重合),求直線與直線的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)函數(shù),討論的單調(diào)性;

2)曲線在點(diǎn)處的切線為,是否存在這樣的點(diǎn)使得直線與曲線也相切,若存在,判斷滿足條件的點(diǎn)的個(gè)數(shù),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的資料顯示,該基地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的有5周,不低于50小時(shí)且不超過70小時(shí)的有35周,超過70小時(shí)的有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(千克)與使用某種液體肥料的質(zhì)量(千克)之間的關(guān)系如圖所示.

(1)依據(jù)上圖,是否可用線性回歸模型擬合的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀運(yùn)行臺(tái)數(shù)

3

2

1

若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺(tái)?

附:相關(guān)系數(shù)公式,

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80分及以上的花苗為優(yōu)質(zhì)花苗.

1)用樣本估計(jì)總體,以頻率作為概率,若在兩塊實(shí)驗(yàn)地隨機(jī)抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,的中點(diǎn),的中點(diǎn),的中點(diǎn),,,平面.

1)求證:平面平面;

2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于x的方程有三個(gè)不等實(shí)根,則實(shí)數(shù)m的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺(tái)生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個(gè)口徑,監(jiān)管部門規(guī)定口徑誤差的計(jì)算方式為:管件內(nèi)外兩個(gè)口徑實(shí)際長(zhǎng)分別為,標(biāo)準(zhǔn)長(zhǎng)分別為口徑誤差只要口徑誤差不超過就認(rèn)為合格,已知這臺(tái)車床分晝夜兩個(gè)獨(dú)立批次生產(chǎn).工廠質(zhì)檢部在兩個(gè)批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取40件作為樣本,經(jīng)檢測(cè)其中晝批次的40個(gè)樣本中有4個(gè)不合格品,夜批次的40個(gè)樣本中有10個(gè)不合格品.

(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個(gè)批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;

(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤(rùn)為10元;若對(duì)產(chǎn)品檢驗(yàn),則每件產(chǎn)品的檢驗(yàn)費(fèi)用為2.5元;若有不合格品進(jìn)入用戶手中,則工廠要對(duì)用戶賠償,這時(shí)生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤(rùn)的期望值為決策依據(jù),分析是否要對(duì)每個(gè)批次的所有產(chǎn)品作檢測(cè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案