6.邵東某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為360元,每桶水進(jìn)價(jià)4元,銷售單價(jià)與日均銷量的關(guān)系如表所示
銷售單價(jià)/元567891011
日均銷售量/桶360320280240200160120
請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營(yíng)部怎樣定價(jià)(單價(jià)要為整元)才能獲得最大利潤(rùn)?最大利潤(rùn)為多少?

分析 (1)若設(shè)定價(jià)在進(jìn)價(jià)的基礎(chǔ)上增加x元,日銷售利潤(rùn)為y元,則日均銷售量P360-40(x-1)=400-40x,(0<x<8,x∈N),
(2)y=(400-40x)x-360=-40x2+400x-360,(0<x<8,x∈N),配方函數(shù)y,可得x取何值時(shí),y有最大值,即獲得最大利潤(rùn).

解答 解:(1)銷售單價(jià)每增加1元,日均銷售量減少40桶.
設(shè)在進(jìn)價(jià)基礎(chǔ)上增加x元后,日均銷售利潤(rùn)為y元,
這時(shí)日均銷售量P=360-40(x-1)=400-40x,(0<x<8,x∈N),
(2)y=(400-40x)x-360=-40x2+400x-360,(0<x<8,x∈N),
由y=-40(x-5)2+640,
易知,當(dāng)x=5時(shí),即定價(jià)為9元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)為640元.

點(diǎn)評(píng) 本題考查了二次函數(shù)模型的應(yīng)用,二次函數(shù)求最值時(shí),通?紤]對(duì)稱軸是否在定義域內(nèi),若在,對(duì)稱軸對(duì)應(yīng)的函數(shù)值是最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.有兩個(gè)質(zhì)地均勻、大小相同的正四面體玩具,每個(gè)玩具的各面上分別寫有數(shù)字1,2,3,4.把兩個(gè)玩具各拋擲一次,向下的面的數(shù)字之和能被5整除的概率為( 。
A.$\frac{1}{16}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.急劇增加的人口已經(jīng)使我們賴以生存的地球不堪重負(fù),控制人口急劇增長(zhǎng)的急迫任務(wù)擺在我們面前.
(1)世界人口在過(guò)去的40 年內(nèi)翻了一番,問(wèn)每年人口平均增長(zhǎng)率是多少?
(2)我國(guó)人口在2003年底達(dá)到13.14億,若將人口平均增長(zhǎng)率控制在1%以內(nèi),我國(guó)人口在2013年底最多有多少億?
以下對(duì)數(shù)值可供計(jì)算使用:
N1.0101.0151.0171.3102.000
lgN0.00430.00650.00750.11730.3010
N12.4813.1113.1414.51
lgN1.09621.11761.11861.1616

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.把一顆骰子連續(xù)投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.
(1)求投擲兩次所得點(diǎn)數(shù)之和能被4整除的概率;
(2)設(shè)向量$\overrightarrow{p}$=(x,y),$\overrightarrow{q}$=(2,-1),求$\overrightarrow{p}$⊥$\overrightarrow{q}$的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某工廠受政府財(cái)政資助生產(chǎn)一種特殊產(chǎn)品,生產(chǎn)這種產(chǎn)品每年需要固定投資80萬(wàn)元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資2萬(wàn)元,若年產(chǎn)量為x(x∈N*)件,當(dāng)x≤18時(shí),政府全年合計(jì)給予財(cái)政撥款為(30x-x2)萬(wàn)元;當(dāng)x>18時(shí),政府全年合計(jì)給予財(cái)政撥款為(225+0.5x)萬(wàn)元,記該工廠生產(chǎn)這種產(chǎn)品全年凈收入為y萬(wàn)元.
(Ⅰ)求y(萬(wàn)元)與x(件)的函數(shù)關(guān)系式;
(Ⅱ)該工廠的年產(chǎn)量為多少件時(shí),全年凈收入達(dá)到最大,并求最大值.
(注:年凈收入=政府年財(cái)政撥款額-年生產(chǎn)總投資)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間:
(2)若直線x=t(t∈(0,$\frac{π}{2}$)既是函數(shù)y=f(x)圖象的對(duì)稱軸又是函數(shù)g(x)=sin2x+acos2x圖象的對(duì)稱軸,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知點(diǎn)A(2,0)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右頂點(diǎn),且橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$.過(guò)點(diǎn)M(-3,0)作直線l交橢圓C于P、Q兩點(diǎn).
(1)求橢圓C的方程,并求出直線l的斜率的取值范圍;
(2)橢圓C的長(zhǎng)軸上是否存在定點(diǎn)N(n,0),使得∠PNM=∠QNA恒成立?若存在,求出n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知定義在R上的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù)
(1)求a,b的值;
(2)判斷f(x)的單調(diào)性,并用單調(diào)性定義證明;
(3)若對(duì)任意的t∈(-∞,1],不等式f(1+2t)+f(k•4t)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知二次函數(shù)f(x)的最小值為1,f(0)=f(2)=3,g(x)=f(x)+ax(a∈R).
①求f(x)的解析式;
②若函數(shù)g(x)在[-1,1]上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案