【題目】如圖,四邊形ABCD為正方形,PD平面ABCDPDQA,QA=AB=PD

I證明:平面PQC平面DCQ

II求二面角Q-BP-C的余弦值.

【答案】詳見解析II

【解析】

試題分析:首先根據(jù)題意以D為坐標(biāo)原點(diǎn),線段DA的長(zhǎng)為單位長(zhǎng),射線DA為x軸的正半軸建立空間直角坐標(biāo)系D-xyz;根據(jù)坐標(biāo)系,求出的坐標(biāo),由向量積的運(yùn)算易得;進(jìn)而可得PQDQ,PQDC,由面面垂直的判定方法,可得證明;依題意結(jié)合坐標(biāo)系,可得B、的坐標(biāo),進(jìn)而求出平面的PBC的法向量與平面PBQ法向量,進(jìn)而求出cos<,>,根據(jù)二面角與其法向量夾角的關(guān)系,可得答案

試題解析:如圖,以D為坐標(biāo)原點(diǎn),線段DA的長(zhǎng)為單位長(zhǎng),射線DAx軸的正半軸建立空間直角坐標(biāo)系.

依題意有,,

,,,所以 ,

,.平面.平面,所以平面平面.

II依題意有,==.

設(shè)是平面的法向量,則

因此可取

設(shè)是平面的法向量,則

可取所以且由圖形可知二面角為鈍角

故二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.

(1)求分?jǐn)?shù)在的頻率及全班人數(shù);

(2)求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點(diǎn)數(shù),分別記為

(1)若記“”為事件,求事件發(fā)生的概率;

(2)若記“”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的邊長(zhǎng)為1,弧是以點(diǎn)為圓心的圓弧.

(1)在正方形內(nèi)任取一點(diǎn),求事件“”的概率;

(2)用大豆將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請(qǐng)據(jù)此估計(jì)圓周率的近似值(精確到).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽活動(dòng). 為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)得分取正整數(shù),滿分為100分作為樣本樣本容量為進(jìn)行統(tǒng)計(jì). 按照[50,60,[60,70,[70,80,[80,90,[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖圖中僅列出了得分在[50,60,[90,100]的數(shù)據(jù).

1求樣本容量和頻率分布直方圖中的,的值;

2在選取的樣本中,從競(jìng)賽成績(jī)是80分以上含80分的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的3名同學(xué)中得分在[80,90的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為),其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).

(1)請(qǐng)將從甲地到乙地的運(yùn)輸成本(元)表示為航行速度(海里/小時(shí))的函數(shù);

(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年五一節(jié)”期間,高速公路車輛“較多,交警部門通過(guò)路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度km/h分成七段[60,65,[65,70,[70,75,[75,80,[80,85,[85,90,[90,95后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問(wèn)題:

1求a的值,并說(shuō)明交警部門采用的是什么抽樣方法?

2若該路段的車速達(dá)到或超過(guò)90km/h即視為超速行駛,求超速行駛的概率

3求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值精確到0.1。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系,直線的方程是的參數(shù)方程是為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系

(1)分別求直線與圓的極坐標(biāo)方程;

(2)射線)與圓的交點(diǎn)為、兩點(diǎn)與直線交于點(diǎn),射線與圓交于兩點(diǎn),與直線交于點(diǎn)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于的一元二次方程.

(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

(2)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有根的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案