如圖,A是以BC為直徑的⊙O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作⊙O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,G是AD的中點(diǎn),連結(jié)CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)若PB=BC=3
2
,求PA的長(zhǎng).
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:(1)利用平行線截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到對(duì)應(yīng)線段成比例,再結(jié)合已知條件可得BF=EF;
(2)利用直角三角形斜邊上的中線的性質(zhì)和等邊對(duì)等角,得到∠FAO=∠EBO,結(jié)合BE是圓的切線,得到PA⊥OA,從而得到PA是圓O的切線,即可求出PA的長(zhǎng).
解答: (1)證明:∵BC是圓O的直徑,BE是圓O的切線,
∴EB⊥BC,又∵AD⊥BC,∴AD∥BE,
∴△BFC∽△DGC,△FEC∽△GAC,∴
BF
DG
=
EF
AG
,
∵G是AD的中點(diǎn),∴DG=AG,∴BF=EF;
(2)解:連結(jié)AO,AB.
∵BC是圓O的直徑,∴∠BAC=90°,
在Rt△BAE中,由(1)知F是斜邊BE的中點(diǎn),
∴AF=FB=EF,∴∠FBA=∠FAB
又∵OA=OB,∴∠ABO=∠BAO,
∵BE是圓O的切線,∴∠EBO=90°,
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是圓O的切線.
∴PA2=PB•PC=3
2
•6
2
=36,
∴PA=6.
點(diǎn)評(píng):本題著重考查了直角三角形的性質(zhì)、相似三角形的判定與性質(zhì)和圓的切線判定定理等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足:a1=6,an+1=an2+4an+2,(n∈N*
(Ⅰ)設(shè)Cn=log2(an+2),求證:{Cn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=
1
an-2
-
1
a
2
n
+4an
,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:
7
30
≤Tn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某計(jì)算機(jī)集團(tuán)公司生產(chǎn)某種型號(hào)計(jì)算機(jī)的固定成本為200萬元,生產(chǎn)每臺(tái)計(jì)算機(jī)的可變成本為3000元,每臺(tái)計(jì)算機(jī)的售價(jià)為5000元,分別寫出總成本C(萬元)、單位成本P(萬元)、銷售收入R(萬元)以及利潤L(萬元)關(guān)于總產(chǎn)量X(臺(tái))的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}(n∈N*)的各項(xiàng)滿足a1=1-3k,an=4n-1-3an-1(n≥2,k∈R),
(Ⅰ)判斷數(shù)列{an-
4n
7
}是否成等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若數(shù)列{an}為遞增數(shù)列,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+ex,g(x)=ex+
1
2
x2-ax(a∈R)(e=2.71828…是自然對(duì)數(shù)的底數(shù))
(1)若F(x)=f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(2)定義:若函數(shù)φ(x)在定義域?yàn)閇m,n](m<n)上的值域?yàn)閇m,n],則稱區(qū)間[m,n]為函數(shù)φ(x)的“同域區(qū)間”,當(dāng)a=
3
2
時(shí),函數(shù)F(x)在區(qū)間(0,2)內(nèi)是否存在“同域區(qū)間”?請(qǐng)說明理由;
(3)當(dāng)a>1時(shí),對(duì)于區(qū)間(2,3)內(nèi)任意兩個(gè)不相等的實(shí)數(shù)x1,x2都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,圓O交BC于D,過點(diǎn)D作圓O的切線DE交AC于點(diǎn)E,且DE⊥AC.求證:AC=2OD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的公差為1,若a1,a2,a4成等比數(shù)列,則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+
2x-1
2x+1
+1,則滿足不等式f(2m-1)+f(m)>2的實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

同步練習(xí)冊(cè)答案