【題目】如圖:在三棱錐中,是直角三角形,,點分別為的中點.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見解析(Ⅱ)

【解析】

(Ⅰ)連結BD,根據(jù)題意可知BDAC,EFAC,從而得到,又因為PB⊥面ABC,得到PB,利用線面垂直的判定定理,證得平面PBD;

(Ⅱ)根據(jù)題意,建立適當?shù)淖鴺讼担鶕?jù)題中所給的邊長,確定對應點的坐標,分別求出兩個平面的法向量,再由夾角公式求二面角的余弦值,從而求得結果.

(Ⅰ)證明:連接BD、在ABC中,∠B=90°

AB=BC,點DAC的中點,∴BDAC

E、F分別為ABBC的中點,∴EFAC

,又∵PB⊥面ABC,EF平面ABC,PB,

平面PBD;

(Ⅱ)∵PB=BC=2

如圖建立空間直角坐標系,

E(1,0,0),C(0,2,0),P(0,0,2),

=(-1,2,0), =(-1,0,2)

設平面PEC的一個法向量為=x,y,z),

=0, =0

x=2,y=1,z=1

=(2,1,1),由已知可得,向量=(2,0,0)為平面PBC 的法向量

cos<,>== ,

∴二面角E-PC-B的余弦值為 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】作出下列函數(shù)的圖像:

1;

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南康某服裝廠擬在年舉行促銷活動,經(jīng)調查測算,該產品的年銷售量(即該廠的年產量)萬件與年促銷費用萬元滿足.已知年生產該產品的固定投入為萬元,每生產萬件該產品需要再投入萬元.廠家將每件產品的銷售價格定為每件產品年平均成本的倍(產品成本包括固定投入和再投入兩部分資金,不包括促銷費用).

1)將年該產品的利潤萬元表示為年促銷費用萬元的函數(shù);

2)該服裝廠年的促銷費用投入多少萬元時,利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左右焦點分別為F1F2,點P 在橢圓上運動, 的最大值為m 的最小值為n,且m≥2n,則該橢圓的離心率的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求證:;

(Ⅱ)若恒成立,求的最大值與的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 垂直于菱形所在平面,且, ,點、分別為邊、的中點,點是線段上的動點.

(I)求證: ;

(II)當三棱錐的體積最大時,求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,點是動點,且直線和直線的斜率之積為.

(1)求動點的軌跡方程;

(2)設直線與(1)中軌跡相切于點,與直線相交于點,判斷以為直徑的圓是否過軸上一定點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校研究性學習小組對該校高三學生視力情況進行調查,在高三全體名學生中隨機抽取了名學生的體檢表,并得到如圖所示的頻率分布直方圖

(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,計算高三全體學生視力在以下的人數(shù),并估計這名學生視力的中位數(shù)(精確到);

(Ⅱ)學習小組發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對高三全體成績名次在前名和后名的學生進行了調查,部分數(shù)據(jù)如表1,根據(jù)表1及臨界表2中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為視力與學習成績有關系?

年段名次

是否近視

近 視

不近視

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.84

5.024

6.635

7.879

10.83

(參考公式: ,其中

查看答案和解析>>

同步練習冊答案