【題目】已知函數(shù),其中.
(1)設(shè)是的導(dǎo)函數(shù),求函數(shù)的極值;
(2)是否存在常數(shù),使得時(shí), 恒成立,且有唯一解,若存在,求出的值;若不存在,說(shuō)明理由.
【答案】(1)極大值為,沒(méi)有極小值;(2).
【解析】試題分析:(1)求導(dǎo),求得,( )求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,即可求得函數(shù)的極值;(2)由(1)可知:必然存在,使得在 單增, 單減,且,求得的表達(dá)式,存在使得,代入即可求得,即可求得的值.
試題解析:
(1)
在 單增;在單減,
極大值,沒(méi)有極小值
(2)由(1)知: ,且 在單減,且時(shí)<0
則必然存在 ,使得在 單增, 單減;
且 ,即 ①
此時(shí):當(dāng) 時(shí),由題意知:只需要找實(shí)數(shù) 使得
將①式帶入知:
得到 ,從而.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列3個(gè)命題: 1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
2)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2﹣8a<0且a>0;
3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}
(1)求實(shí)數(shù)a、b的值;
(2)解關(guān)于x的不等式 >0(c為常數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=bax(a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,8),B(3,32)
(1)試求a,b的值;
(2)若不等式( )x+( )x﹣m≥0在x∈(﹣∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命題正確的序號(hào)是 .
①如果函數(shù)f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值為127 .
②數(shù)列{an}滿(mǎn)足首項(xiàng)a1=2,ak+12﹣ak2=2,k∈N* , 當(dāng)n∈M且n最大時(shí),數(shù)列{an}有2048個(gè).
③數(shù)列{an}(n=1,2,3,…,8)滿(mǎn)足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果數(shù)列{an}中的每一項(xiàng)都是集合M的元素,則符合這些條件的不同數(shù)列{an}一共有33個(gè).
④已知直線(xiàn)amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 則一共可以得到不同的直線(xiàn)196條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣2),若f(2)=1
(1)求a的值;
(2)求f(3 )的值;
(3)解不等式f(x)<f(x+2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),圓C: ,
(1)過(guò)點(diǎn)向圓C引切線(xiàn)l,求切線(xiàn)l的方程;
(2)過(guò)點(diǎn)A作直線(xiàn) 交圓C于P,Q,且,求直線(xiàn)的斜率k;
(3)定點(diǎn)M,N在直線(xiàn) 上,對(duì)于圓C上任意一點(diǎn)R都滿(mǎn)足,試求M,N兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體的棱長(zhǎng)為1,B'C∩BC'=O,則AO與A'C'所成角的度數(shù)為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
(1函數(shù)f(x)=loga(2x﹣1)﹣1的圖象過(guò)定點(diǎn)(1,0);
(2化簡(jiǎn)2 +lg5lg2+(lg2)2﹣lg2的結(jié)果為25;
(3若loga <1,則a的取值范圍是(1,+∞);
(4若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),則x+y<0.
其中所有正確命題的序號(hào)是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com