已知圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑為2的半圓,則這個(gè)圓錐的高是 .

 

【解析】

試題分析: 設(shè)圓錐的母線為,底面半徑為因此圓錐的高是

考點(diǎn):圓錐的側(cè)面展開(kāi)圖

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省高二第二學(xué)期階段測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:填空題

冪函數(shù) f(x)=xα(α∈R)過(guò)點(diǎn),則f(4)= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省高三8月開(kāi)學(xué)考試數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)y=sinx與y=cosx在內(nèi)的交點(diǎn)為P,在點(diǎn)P處兩函數(shù)的切線與x軸所圍成的三角形的面積為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省南京市高三9月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+|x-a|,aR.

(1)若a=-1,求函數(shù)y=f(x) (x [0,+∞))的圖象在x=1處的切線方程;

(2)若g(x)=x4,試討論方程f(x)=g(x)的實(shí)數(shù)解的個(gè)數(shù);

(3)當(dāng)a>0時(shí),若對(duì)于任意的x1 [a,a+2],都存在x2 [a+2,+∞),使得f(x1)f(x2)=1024,求滿足條件的正整數(shù)a的取值的集合.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省南京市高三9月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2-6x+5=0,點(diǎn)A,B在圓C上,且AB=2,則的最大值是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省南京市高三9月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為4:3:3,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取容量為80的樣本,則應(yīng)從高一年級(jí)抽取 名學(xué)生.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省南京市高三9月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,三棱柱ABC-A1B1C1中,M,N分別為AB,B1C1的中點(diǎn).

(1)求證:MN∥平面AA1C1C;

(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求證:AB?平面CMN.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省南京市高二下4月月考數(shù)學(xué)試卷(解析版) 題型:解答題

經(jīng)銷(xiāo)商用一輛型卡車(chē)將某種水果運(yùn)送(滿載)到相距400km的水果批發(fā)市場(chǎng).據(jù)測(cè)算,型卡車(chē)滿載行駛時(shí),每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費(fèi)外,人工工資、車(chē)損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為7.5元/L.

(1)設(shè)運(yùn)送這車(chē)水果的費(fèi)用為(元)(不計(jì)返程費(fèi)用),將表示成速度的函數(shù)關(guān)系式;

(2)卡車(chē)該以怎樣的速度行駛,才能使運(yùn)送這車(chē)水果的費(fèi)用最少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.

(1)試確定m,使直線AP與平面BDD1B1所成角為60º;

(2)在線段上是否存在一個(gè)定點(diǎn),使得對(duì)任意的m,

⊥AP,并證明你的結(jié)論.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案