【題目】某市統(tǒng)計(jì)局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在).
(1)求居民收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽取多少人?
【答案】(1);(2)
;(3)
【解析】
(1)根據(jù)頻率小矩形的高
組距來求;
(2)根據(jù)中位數(shù)的左右兩邊的矩形的面積和相等,所以只需求出從左開始面積和等于0.5的底邊橫坐標(biāo)的值即可;
(3)求出月收入在,
的人數(shù),用分層抽樣的抽取比例乘以人數(shù),可得答案.
解:(1)月收入在的頻率為
;
(2)從左數(shù)第一組的頻率為;
第二組的頻率為;
第三組的頻率為;
中位數(shù)位于第三組,設(shè)中位數(shù)為
,則
,
.
中位數(shù)為
(元
(3)月收入在的頻數(shù)為
(人
,
抽取的樣本容量為100.
抽取比例為
,
月收入在
的這段應(yīng)抽取
(人
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱中,底面
為菱形,
,
為
中點(diǎn),
在平面
上的投影
為直線
與
的交點(diǎn).
(1)求證:;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A(﹣2,0),B(2,0),P為不在x軸上的動(dòng)點(diǎn),直線PA,PB的斜率滿足kPAkPB.
(1)求動(dòng)點(diǎn)P的軌跡Γ的方程;
(2)若M,N是軌跡Γ上兩點(diǎn),kMN=1,求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:
假設(shè)甲、乙兩種酸奶獨(dú)立銷售且日銷售量相互獨(dú)立.
(1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為
,
,試比較
與
的大小;(只需寫出結(jié)論)
(2)估計(jì)在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率;
(3)設(shè)表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求
的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若
對任意的
恒成立,求實(shí)數(shù)
的值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銀川市展覽館22天中每天進(jìn)館參觀的人數(shù)如下:
180 158 170 185 189 180 184 185 140 179 192
185 190 165 182 170 190 183 175 180 185 148
計(jì)算參觀人數(shù)的中位數(shù)、眾數(shù)、平均數(shù)、標(biāo)準(zhǔn)差(保留整數(shù)部分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小值為
,其中
.
(1)求的值;
(2)若對任意的,有
成立,求實(shí)數(shù)
的范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在
上的奇函數(shù),在
上是增函數(shù),且
,給出下列結(jié)論,
①若且
,則
;
②若且
,則
;
③若方程在
內(nèi)恰有四個(gè)不同的實(shí)根
,
,
,
,則
或8;
④函數(shù)在
內(nèi)至少有5個(gè)零點(diǎn),至多有13個(gè)零點(diǎn).
其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論:
(1)若,則
恒成立;
(2)命題“若,則
”的逆否命題為“若
,則
”;
(3)“命題為真”是“命題
為真”的充分不必要條件;
(4)命題“”的否定是“
”.
其中正確的結(jié)論的個(gè)數(shù)是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com