14.已知命題p:y=loga(2-ax)在[0,1]上是減函數(shù);命題$q:y=lg(a{x^2}-x+\frac{a}{12})$的值域是R,若命題“p且q”是假命題,“p或q”是真命題,求實(shí)數(shù)a的取值范圍.

分析 先求出命題p,q為真命題的等價(jià)條件,然后利用“p且q”是假命題,“p或q”是真命題,確定實(shí)數(shù)a的取值范圍.

解答 解:∵y=loga(2-ax)在區(qū)間[0,1]上為減函數(shù),∴a>1.
又∵2-ax>0在[0,1]上恒成立,
2-a>0,即a<2,
∴1<a<2.
$y=lg(a{x}^{2}-x+\frac{a}{12})$的值域是R,
∴$a{x}^{2}-x+\frac{a}{12}$的值域?yàn)椋?,+∞);
①若a=0,-x的值域可以為(0,+∞);
②若a≠0,則$\left\{\begin{array}{l}{a>0}\\{△≥0}\end{array}\right.$,
解得0<a$≤\sqrt{3}$.
∴a的取值范圍是:0≤a$≤\sqrt{3}$.
由題意可知p真:1<a<2;q真:0≤a$≤\sqrt{3}$.
∵“p且q”是假命題,“p或q”是真命題
∴p、q一真一假.
當(dāng)p真q假時(shí)$\sqrt{3}<a<2$,當(dāng)p假q真時(shí)0≤a≤1.
綜上,a的取值范圍是$({\sqrt{3},2})$∪[0,1].

點(diǎn)評(píng) 本題主要考查復(fù)合命題的真假判斷以及應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,$\sqrt{3}$sinB-cosB=1,a=2.
(1)求角B的大;
(2)若b2=ac,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知z是純虛數(shù),且(2+i)z=1+ai3(i是虛數(shù)單位,a∈R),則|a+z|=( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},則M∩N=( 。
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.動(dòng)點(diǎn)P到直線x+5=0的距離減去它到M(2,0)的距離的差等于3,則點(diǎn)P的軌跡是( 。
A.直線B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,則sinα+cosα等于( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)到右頂點(diǎn)的距離為2,左焦點(diǎn)為F(-$\sqrt{2}$,0),過點(diǎn)D(0,3)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程及k的取值范圍;
(2)在y軸上是否存在定點(diǎn)E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A=$\{x|{(\frac{1}{2})^x}<1\}$,B={x|lgx>0}則A∪B等于( 。
A.{x|x>0}B.{x|x>1}C.RD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題p:已知函數(shù)f(x)的定義域?yàn)镽,若f(x)是奇函數(shù),則f(0)=0,則它的原命題,逆命題、否命題、逆命題中,真命題的個(gè)數(shù)為(  )
A.0B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案