A. | 4$\sqrt{30}$ | B. | $\sqrt{23}$ | C. | 23 | D. | 25 |
分析 連接OA、OD作OE⊥AC OF⊥BD垂足分別為E、F,推導(dǎo)出四邊形OEPF為矩形,由OA=OC=4,OM=3,求出AC2+BD2=92,由任意對(duì)角線互相垂直四邊形的面積等于對(duì)角線乘積的$\frac{1}{2}$,求出當(dāng)AC=BD時(shí),四邊形ABCD的面積取最大值.
解答 解:如圖,連接OA、OD作OE⊥AC OF⊥BD垂足分別為E、F
∵AC⊥BD
∴四邊形OEPF為矩形
已知OA=OC=4,OM=3,
設(shè)OE為x,則OF=EP=$\sqrt{O{M}^{2}-O{E}^{2}}$=$\sqrt{9-{x}^{2}}$,
∴AC=2AE=2$\sqrt{O{A}^{2}-O{E}^{2}}$=2$\sqrt{16-{x}^{2}}$,
BD=2DF=2$\sqrt{O{D}^{2}-O{F}^{2}}$=2$\sqrt{{x}^{2}+7}$,
∴AC2+BD2=92,
由此可知AC與BD兩線段的平方和為定值,
又∵任意對(duì)角線互相垂直四邊形的面積等于對(duì)角線乘積的$\frac{1}{2}$,
當(dāng)AC=BD=$\sqrt{46}$時(shí)
四邊形ABCD的面積最大值$\frac{1}{2}×AC×BD=\frac{1}{2}×\sqrt{46}×\sqrt{46}$=23.
故選:B.
點(diǎn)評(píng) 本題考查四邊形的面積的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com