證明:(1)條件的必要性是顯然的,
因?yàn)橐阎猘>0,b>0,c>0,
所以立即可得a+b+c>0,
ab+bc+ca>0,abc>0.
下面證明條件的充分性:
設(shè)a,b,c是三次方程x
3+px
2+qx+r=0的三個(gè)根,
則由根與系數(shù)的關(guān)系及已知條件有-p=a+b+c>0,
q=ab+bc+ca>0,-r=abc>0,
此即p<0,q>0,r<0.
由此即可知三次方程x
3+px
2+qx+r=0的系數(shù)正負(fù)相間,
所以此方程無(wú)負(fù)根,即方程根均非負(fù);
又由abc>0可知,方程無(wú)零根,
故a>0,b>0,c>0;
(2)由(1)的證明可知,α,β,γ均為正數(shù)的充要條件是p<0,q>0,r<0.
于是問(wèn)題轉(zhuǎn)化為證明α,β,γ為三角形三條邊的充要條件為p
3>4pq-8r
條件的必要性:
若α,β,γ為三角形的三邊,
則由三角形的性質(zhì)必有α+β>γ,β+γ>α,γ+α>β.
于是α+β-γ>0,β+γ-α>0,γ+α-β>0.
由此可得(α+β-γ)(β+γ-α)(γ+α-β)
=(-p-2α)(-p-2β)(-p-2γ)
=-(p+2α)(p+2β)(p+2γ)
=-[p
3+2(α+β+γ)p
2+4(βγ+γα+αβ)p+8αβγ]
=-(p
3-2p
3+4pq-8r)=p
3-4pq+8r>0
即p
3>4pq-8r.
條件的充分性:若p
3>4pq-8r,
則p
3-4pq+8r>0,
-(α+β+γ)
3+4(α+β+γ)(αβ+βγ+γα)-8αβγ>0,
(α+β+γ)(2αβ+2βγ+2γα-α
2-β
2-γ
2)-8αβγ>0,
[α+(β+γ)][-(β-γ)
2+2α(β+γ)-α
2]-8αβγ>0,
-α
3+α
2(β+γ)+α(β-γ)
2-(β+γ)(β-γ)
2>0,
α
2(-α+β+γ)+(β-γ)
2(α-β-γ)>0,
(-α+β+γ)[α
2-(β-γ)
2]>0,
(-α+β+γ)(α+β-γ)(α-β+γ)>0.
此式中至少有一因式大于0,今設(shè)-α+β+γ>0,
則必有(α+β-γ)(α-β+γ)>0.
如果α+β-γ<0,α-β+γ<0,
兩式相加得2a<0,
即α<0,此與α>0相矛盾
故有-α+β+γ>0,α+β-γ>0,α-β+γ>0,
此即
此即α,β,γ可作為一個(gè)三角形的三條邊.
綜上所證可知,
方程x
3+px
2+qx+r=0的三根α,β,γ為一個(gè)三角形的三條邊的充要條件是
.
分析:(1)必要性顯然,關(guān)鍵是證明充分性.可設(shè)a,b,c是三次方程x
3+px
2+qx+r=0的三個(gè)根,利用根與系數(shù)的關(guān)系及已知條件即可證明a,b,c滿足的條件,從而得出a,b,c是整數(shù).
(2)借助(1)的證明,問(wèn)題轉(zhuǎn)化為證明α,β,γ為三角形三條邊的充要條件為p
3>4pq-8r.由三角形的性質(zhì)和適當(dāng)?shù)挠?jì)算,即可證明此充要條件.
點(diǎn)評(píng):此題考查必要條件、充分條件與充要條件的判別,同時(shí)考查三次方程根的相關(guān)知識(shí)以及三角形邊的性質(zhì).