如果雙曲線與橢圓數(shù)學(xué)公式有相同焦點(diǎn),且經(jīng)過點(diǎn)數(shù)學(xué)公式,那么雙曲線其方程是________.


分析:先根據(jù)雙曲線與橢圓有相同焦點(diǎn),確定雙曲線的焦點(diǎn)坐標(biāo),再利用雙曲線經(jīng)過點(diǎn),根據(jù)雙曲線的定義,即可求得雙曲線的標(biāo)準(zhǔn)方程.
解答:橢圓的焦點(diǎn)坐標(biāo)為(0,±3)
∵雙曲線與橢圓有相同焦點(diǎn),
∴雙曲線的焦點(diǎn)坐標(biāo)為(0,±3)
∵雙曲線經(jīng)過點(diǎn)
∴2a=||=4
∴a=2
∴b2=9-4=5
∴雙曲線的方程是
故答案為:
點(diǎn)評:本題考查橢圓、雙曲線的幾何性質(zhì),考查雙曲線的定義,考查雙曲線的標(biāo)準(zhǔn)方程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)(理)設(shè)斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點(diǎn),P為概括后命題中曲線上一動點(diǎn),借助直線L及動點(diǎn)P,請你提出一個有意義的數(shù)學(xué)問題,并予以解決.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:楊浦區(qū)二模 題型:解答題

(理)設(shè)斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點(diǎn),P為概括后命題中曲線上一動點(diǎn),借助直線L及動點(diǎn)P,請你提出一個有意義的數(shù)學(xué)問題,并予以解決.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年上海市楊浦區(qū)、靜安區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)設(shè)斜率為k1的直線L交橢圓C:于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請你給出在雙曲線(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點(diǎn),P為概括后命題中曲線上一動點(diǎn),借助直線L及動點(diǎn)P,請你提出一個有意義的數(shù)學(xué)問題,并予以解決.

查看答案和解析>>

同步練習(xí)冊答案