14.已知橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$,則以點(diǎn)$A(2,\frac{3}{2})$為中點(diǎn)的弦所在直線(xiàn)的方程為( 。
A.8x-6y-7=0B.3x+4y=0C.3x+4y-12=0D.4x-3y=0

分析 設(shè)以點(diǎn)$A(2,\frac{3}{2})$為中點(diǎn)的弦與橢圓交于M(x1,y1),N(x2,y2),利用點(diǎn)差法能求出結(jié)果.

解答 解:設(shè)以點(diǎn)$A(2,\frac{3}{2})$為中點(diǎn)的弦與橢圓交于M(x1,y1),N(x2,y2),
則x1+x2=4,y1+y2=3,
分別把M(x1,y1),N(x2,y2)代入橢圓方程$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$,
可得$\frac{{{x}_{1}}^{2}}{16}+\frac{{{y}_{1}}^{2}}{9}=1$,$\frac{{{x}_{2}}^{2}}{16}+\frac{{{y}_{2}}^{2}}{9}=1$
再相減可得(x1+x2)(x1-x2)+$\frac{16}{9}$(y1+y2)(y1-y2)=0,
∴4(x1-x2)+$\frac{16}{3}$(y1-y2)=0,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3}{4}$,
∴點(diǎn)$A(2,\frac{3}{2})$為中點(diǎn)的弦所在直線(xiàn)方程為y-$\frac{3}{2}$=-$\frac{3}{4}$(x-2),
整理,得:3x+4y-12=0.
故選:C.

點(diǎn)評(píng) 本題考查直線(xiàn)方程的求法,直線(xiàn)與橢圓的位置關(guān)系的綜合應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)$f(x)=\left\{\begin{array}{l}sinx+\frac{3}{2},x≥0\\{x^2}+a,x<0\end{array}\right.$(其中a∈R)的值域?yàn)?[\frac{1}{2},+∞)$,則a的取值范圍是(  )
A.$[\frac{3}{2},+∞)$B.$[\frac{1}{2},\frac{3}{2}]$C.$[\frac{1}{2},\frac{5}{2}]$D.$[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知p:x2-8x-20>0,q:(x-1-m)(x-1+m)>0 (m>0),若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知i為虛數(shù)單位,則|$\frac{2+4i}{1+\sqrt{3}i}$|=( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,滿(mǎn)足$\overrightarrow{a}$•$\overrightarrow$=0,且|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow{c}$+2$\overrightarrow{a}$|的取值范圍是( 。
A.[1,3]B.[2$\sqrt{2}$,3]C.[$\frac{6\sqrt{5}}{5}$,2$\sqrt{2}$]D.[$\frac{6\sqrt{5}}{5}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.圓C1的方程為(x-1)2+y2=$\frac{4}{25}$,圓C2的方程為(x-1-cosθ)2+(y-sinθ)2=$\frac{1}{25}$(θ∈R),過(guò)C2上任意一點(diǎn)P作圓C1的兩條切線(xiàn)PM、PN,切點(diǎn)分別為M、N,則∠MPN的最大值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$a={(\frac{1}{2})^3},b={3^{\frac{1}{2}}},c={log_{\frac{1}{2}}}3$,則a,b,c之間的大小關(guān)系為(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.f(x)的定義域?yàn)镽,且$f(x)=\left\{\begin{array}{l}{2^{-x}}-1\;\;\;\;\;x≤0\\ f(x-2)\;\;x>0\end{array}\right.$.若方程$f(x)=\frac{3}{2}x+a$的兩個(gè)不同實(shí)根,則a的取值范圍為( 。
A.(-∞,3)B.(-∞,3]C.(0,3)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.兩個(gè)向量相等的充要條件是它們的( 。
A.長(zhǎng)度相等B.長(zhǎng)度相等,方向相同
C.方向相同D.面積相等

查看答案和解析>>

同步練習(xí)冊(cè)答案