5.用符號(hào)表示“點(diǎn)A在平面α內(nèi),直線(xiàn)l在平面α內(nèi)”為A∈α,l?α.

分析 直接利用空間點(diǎn)、線(xiàn)、面的關(guān)系寫(xiě)出結(jié)果即可.

解答 解:“點(diǎn)A在平面α內(nèi),直線(xiàn)l在平面α內(nèi)”符號(hào)表示為:A∈α,l?α;
故答案為:A∈α,l?α.

點(diǎn)評(píng) 本題考查空間點(diǎn)、線(xiàn)、面的位置關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}中,a1=1,an+1=2an+3(n≥2,且n∈N*
(Ⅰ) 求證:數(shù)列{an+3}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{1}{2}$+$\frac{1}{x}$,正項(xiàng)數(shù)列{an}滿(mǎn)足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N*,求Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.下列幾個(gè)命題:
①函數(shù)y=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函數(shù),但不是奇函數(shù);
②“$\left\{\begin{array}{l}a>0\\△={b^2}-4ac≤0\end{array}$”是“一元二次不等式ax2+bx+c≥0的解集為R”的充要條件;
③若函數(shù)y=Acos(ωx+ϕ)(A≠0)為奇函數(shù),則ϕ=$\frac{π}{2}$+kπ(k∈Z);
④已知x∈(0,π),則y=sinx+$\frac{2}{sinx}$的最小值為2$\sqrt{2}$.
其中正確的有②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.曲線(xiàn)f(x)=x2過(guò)點(diǎn)P(-1,0)處的切線(xiàn)方程是y=0或4x+y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知△ABC的外接圓半徑為1,圓心為O,且滿(mǎn)足$\overrightarrow{OA}+2\overrightarrow{OB}+4\overrightarrow{OC}=0$,則$\overrightarrow{AB}•\;\overrightarrow{OA}$=( 。
A.$-\frac{15}{4}$B.$-\frac{7}{4}$C.$\frac{7}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設(shè)休閑區(qū)的長(zhǎng)A1B1=x米,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?并求出面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.將函數(shù)y=sin(x-$\frac{5π}{6}$)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得圖象向左平移$\frac{π}{3}$個(gè)單位,則所得函數(shù)圖象對(duì)應(yīng)的解析式是( 。
A.$y=sin(\frac{x}{2}-\frac{π}{4})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin({2x-\frac{3π}{2}})$D.$y=sin(\frac{x}{2}-\frac{2π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若復(fù)數(shù)$\frac{1-bi}{2+i}$(b∈R)的實(shí)部與虛部相等,則b的值為(  )
A.-6B.-3C.3D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案