【題目】在平面直角坐標(biāo)系中,橢圓: ()的離心率為,連接橢圓的四個(gè)頂點(diǎn)所形成的四邊形面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓上點(diǎn)到定點(diǎn)()的距離的最小值為1,求的值及點(diǎn)的坐標(biāo);
(3)如圖,過橢圓的下頂點(diǎn)作兩條互相垂直的直線,分別交橢圓于點(diǎn), ,設(shè)直線的斜率為,直線: 分別與直線, 交于點(diǎn), .記, 的面積分別為, ,是否存在直線,使得?若存在,求出所有直線的方程;若不存在,說明理由.
【答案】(1)(2)的值為2,點(diǎn)的坐標(biāo)為(3),
【解析】試題分析:(1)根據(jù)題意列出式子解得從而得到橢圓方程;(2)根據(jù)點(diǎn)點(diǎn)距公式得到,研究這個(gè)函數(shù)的最值即可;(3)聯(lián)立直線和橢圓得到二次方程, ,將面積比轉(zhuǎn)化為坐標(biāo)之比代入即可。
解析:
(1)由題意得: 解得
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè),由定點(diǎn),考慮距離的平方:
則,
二次函數(shù)的圖象對(duì)稱軸為,
由橢圓方程知,
由題設(shè)知,
①當(dāng),即時(shí),在時(shí)有,
解得,不符合題意,舍去;
②當(dāng),即時(shí),由單調(diào)性知:在時(shí)有,
解得或(舍).
綜上可得: 的值為2,點(diǎn)的坐標(biāo)為.
(3)由(1)知, ,則直線的方程為,
聯(lián)立消去并整理得,解得;
直線的方程為,同理可得.
聯(lián)立解得,同理可得,
所以,
即,解得或,
所以或,
故存在直線: , 滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)某班50名學(xué)生在一次數(shù)學(xué)測(cè)試中,成績(jī)?nèi)拷橛?/span>50與100之間,將測(cè)試結(jié)果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績(jī)大于或等于60且小于80,認(rèn)為合格,求該班在這次數(shù)學(xué)測(cè)試中成績(jī)合格的人數(shù);
(Ⅱ)從測(cè)試成績(jī)?cè)?/span>[50,60)∪[90,100]內(nèi)的所有學(xué)生中隨機(jī)抽取兩名同學(xué),設(shè)其測(cè)試成績(jī)分別為m、n,求事件“|m﹣n|>10”概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點(diǎn)E為AD的中點(diǎn),若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在上的函數(shù)對(duì)于任意實(shí)數(shù),都有成立,且,當(dāng)時(shí),.
(1)判斷的單調(diào)性,并加以證明;
(2)試問:當(dāng)時(shí),是否有最值?如果有,求出最值;如果沒有,說明理由;
(3)解關(guān)于的不等式,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn).
(1)求圓A的方程;
(2)當(dāng)|MN|=2時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)已知函數(shù)是偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)設(shè),若 有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函數(shù)f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函數(shù)g(x)在x∈[0,2]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
② 求函數(shù)g(x)在x∈[0,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將兩塊三角板按圖甲方式拼好,其中, , ,
,現(xiàn)將三角板沿折起,使在平面上的射影恰好在上,如圖乙.
(1)求證: ;
(2)求證: 為線段中點(diǎn);
(3)求二面角的大小的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com