精英家教網 > 高中數學 > 題目詳情
定義在R上的函數y=f(x)是增函數,且函數y=f(x-2)的圖象關于(2,0)成中心對稱,設s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時,則3t+s的范圍是   
【答案】分析:先確定y=f(x)函數圖象關于(0,0)點對稱,再利用函數是增函數,將不等式f(s2-4s)≥-f(4t-t2),化為具體不等式,利用可行域,即可求得3t+s的范圍
解答:解:y=f(x-2)的圖象相當于y=f(x)函數圖象向右移了2個單位.
又由于y=f(x-2)圖象關于(2,0)點對稱,向左移2個單位,即表示y=f(x)函數圖象關于(0,0)點對稱.
所以-f(4t-t2)=f(t2-4t)
即不等式f(s2-4s)≥-f(4t-t2),等價于f(s2-4s)≥f(t2-4t)
因為函數y=f(x)是增函數,所以s2-4s≥t2-4t
移項得:s2-4s-t2+4t≥0,即:(s-t)(s+t-4)≥0
得:s≥t且s+t≥4或s≤t且s+t≤4
可行域如圖所示,則當s=-2,t=-2時,3t+s有最小值是-6-2=-8
當s=-2,t=6時,3t+s有最大值是18-2=16
故3t+s范圍是[-8,16]
故答案為:[-8,16]
點評:本題考查函數的性質,考查不等式的化簡,考查線性規(guī)劃知識,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

11、定義在R上的函數y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2009)的值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

13、定義在R上的函數y=f(x)滿足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,則f(508)=
0

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,則有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

下列四個命題:
①“a>b”是“2a>2b”成立的充要條件;
②“a=b”是“l(fā)ga=lgb”成立的充分不必要條件;
③函數f(x)=ax2+bx(x∈R)為奇函數的充要條件是“a=0”
④定義在R上的函數y=f(x)是偶函數的必要條件是
f(-x)f(x)
=1”

其中真命題的序號是
①③
①③
.(把真命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2011)=
-1
-1

查看答案和解析>>

同步練習冊答案