已知曲線(xiàn)y=f(x)在x=2處的切線(xiàn)方程為y=-x+8,則f(2)+f'(2)=______.
根據(jù)切點(diǎn)在切線(xiàn)上可知當(dāng)x=2時(shí),y=6
∴f(2)=6
∵函數(shù)y=f(x)的圖象在x=2處的切線(xiàn)方程是y=-x+8,
∴f′(2)=-1
則f(2)+f′(2)=6+(-1)=5
故答案為:5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)二模)設(shè)函數(shù)f(x)=alnx+
2
a
2
 
x
(a≠0)

(1)已知曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)l的斜率為2-3a,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)在(1)的條件下,求證:對(duì)于定義域內(nèi)的任意一個(gè)x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+bx(a,b∈R),已知曲線(xiàn)y=f(x)在點(diǎn)M(-1,f(-1))處的切線(xiàn)方程是y=4x+3.
(1)求a,b的值;
(2)求函數(shù)f(x)在區(qū)間[-2,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-lnx.(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)已知曲線(xiàn)y=f(x)與直線(xiàn)y=x相切,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,t∈R,函數(shù)f (x)=(x-t)3+m.
(I)當(dāng)t=1時(shí),
(i)若f (1)=1,求函數(shù)f (x)的單調(diào)區(qū)間;
(ii)若關(guān)于x的不等式f (x)≥x3-1在區(qū)間[1,2]上有解,求m的取值范圍;
(Ⅱ)已知曲線(xiàn)y=f (x)在其圖象上的兩點(diǎn)A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線(xiàn)分別為l1、l2.若直線(xiàn)l1與l2平行,試探究點(diǎn)A與點(diǎn)B的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)y=f(x)在x=-2處的切線(xiàn)的傾斜角為
4
,則f′(-2)=
 
,[f(-2)]′=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案