已知橢圓,左右焦點分別為,
(1)若上一點滿足,求的面積;
(2)直線交于點,線段的中點為,求直線的方程。
(1).(2)。
【解析】
試題分析:(1)由于橢圓定義可以得到,那么根據(jù)直角三角形得到,從而得到,得到面積的值。
(2)設(shè)出點A,B的坐標,代入橢圓方程中,然后作差,得到AB的斜率與AB的中點坐標關(guān)系進而求解。
解:(1)由第一定義,,即
由勾股定理,,所以,.
(2)設(shè),滿足,,兩式作差,將,代入,得,可得,直線方程為:。
考點:本試題主要考查了橢圓的定義以及直線與橢圓的位置關(guān)系的綜合運用。
點評:解決該試題的關(guān)鍵是根據(jù)定義結(jié)合直角三角形勾股定理得到三角形的面積的值。并能利用點差法思想得到弦中點與直線的斜率的關(guān)系式。
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的左右焦點分別是,直線與橢圓交于兩點,.當時,M恰為橢圓的上頂點,此時△的周長為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左頂點為A,直線與直線分別相交于點,,問當
變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,
若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點為A,直線與直線:
分別相交于點,問當變化時,以線段為直徑的圓
被軸截得的弦長是否為定值?若是,求出這個定值,若不是,
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點為A,直線與直線:
分別相交于點,問當變化時,以線段為直徑的圓
被軸截得的弦長是否為定值?若是,求出這個定值,若不是,
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點為A,直線與直線:
分別相交于點,問當變化時,以線段為直徑的圓
被軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com