命題若“a2=b2,則a=b”為
 
命題(填真或假)
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:首先,根據(jù)“a2=b2,則|a|=|b|”,然后,進(jìn)一步判斷即可.
解答: 解:∵a2=b2,
∴|a|=|b|,
∴原命題為假命題,
故答案為:假
點(diǎn)評(píng):本題重點(diǎn)考查命題的真假判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1、F2為雙曲線C:x2-
y2
b2
=1(b>0)
的左、右焦點(diǎn),過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點(diǎn)M,且∠MF1F2=30°.圓O的方程是x2+y2=b2
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點(diǎn)P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求
PP1
PP2
的值;
(3)過圓O上任意一點(diǎn)Q(x0,y0)作圓O的切線l交雙曲線C于A、B兩點(diǎn),AB中點(diǎn)為M,求證:|
AB
|=2|
OM
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1棱長為1,點(diǎn)M是BC1的中點(diǎn),P是BB1一動(dòng)點(diǎn),則(AP+MP)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinβ=
3
5
π
2
<β<π),且sin(α+β)=cosα,則sin2α+sinαcosα-2cos2α等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+2+(-1)nan=2,記Sn是數(shù)列{an}的前n項(xiàng)和,則S60=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
4
x-
x
,正實(shí)數(shù)a、b、c滿足f(c)<0<f(a)<f(b),若實(shí)數(shù)d是函數(shù)f(x)的一個(gè)零點(diǎn),那么下列5個(gè)判斷:①d<a;②d>b;③d<c;④c<a;⑤a>b.其中可能成立的個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)(a,b)是區(qū)域
x+y-4≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。
A、
1
4
B、
2
3
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m、n,平面α、β,給出下列命題:其中正確的命題是( 。
①若m⊥α,n⊥β,且m⊥n,則α⊥β    
②若m∥α,n∥β,且m∥n,則α∥β
③若m⊥α,n∥β,且m⊥n,則α⊥β     
④若m⊥α,n∥β,且m∥n,則α⊥β
A、①③B、②④C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(i-1)2等于(  )
A、-2iB、2i
C、2-2iD、2+2i

查看答案和解析>>

同步練習(xí)冊(cè)答案