【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對任意x∈(﹣ , )恒成立,求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)由函數(shù)f(x)=4cosxsin(x+ )﹣1,
可得:f(x)=4cosx( sinx+ cosx)﹣1
= sin2x+2cos2x﹣1
= sin2x+cos2x
=2sin(2x+ )
由 (k∈Z),
解得:
所以:f(x)的單調(diào)增區(qū)間為
(Ⅱ)由題意:當(dāng) 時(shí),
原不等式等價(jià)于a2cos2x>6cos4x﹣sin2x﹣1,
即 恒成立
令 =
∵ ,當(dāng)x=0時(shí),cosx取得最大值,即cosx=1時(shí),那么g(x)也取得最大值為 .
因此, .
【解析】(Ⅰ)先利用兩角和余差的基本公式和輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,再將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求出f(x+ )的值,帶到題設(shè)中去,化簡,求函數(shù)在x∈(﹣ , )的最值,即可恒成立,從而求實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】利用正弦函數(shù)的單調(diào)性和三角函數(shù)的最值對題目進(jìn)行判斷即可得到答案,需要熟知正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域是一切實(shí)數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實(shí)數(shù)x都成立,則稱f(x)實(shí)數(shù)一個(gè)“λ一半隨函數(shù)”,有下列關(guān)于“λ一半隨函數(shù)”的結(jié)論:①若f(x)為“1一半隨函數(shù)”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個(gè)“λ一半隨函數(shù);③“ 一半隨函數(shù)”至少有一個(gè)零點(diǎn);④f(x)=x2是一個(gè)“λ一班隨函數(shù)”;其中正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當(dāng)a∈( ,3)時(shí),求直線AC的傾斜角α的取值范圍;
(2)當(dāng)a=2時(shí),求△ABC的BC邊上的高AH所在直線方程l.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)社會調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在[2500,3000)(元)月收入段應(yīng)抽出人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點(diǎn)圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是( )
A.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對稱
C.若方程f(x)=m在[﹣ ,0]上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m∈(﹣2,﹣ ]
D.將函數(shù)f(x)的圖象向左平移 個(gè)單位可得到一個(gè)偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ , ],求函數(shù)f(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線l:mx+y+1=0對稱. (I)求m的值;
(Ⅱ)直線l與圓C交于A,B兩點(diǎn), =﹣3(O為坐標(biāo)原點(diǎn)),求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,A為以原點(diǎn)O為圓心的單位圓O與x正半軸的交點(diǎn),在圓心角為 的扇形AOB的弧AB上任取一點(diǎn) P,作 PN⊥OA于N,連結(jié)PO,記∠PON=θ.
(1)設(shè)△PON的面積為y,使y取得最大值時(shí)的點(diǎn)P記為E,點(diǎn)N記為F,求此時(shí) 的值;
(2)求k=a| || |+ (a∈R,E 是在(1)條件下的點(diǎn) E)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com