已知函數(shù)f(x)=x2-8lnx,g(x)=-x2+14x.
(Ⅰ)若函數(shù)y=f(x)和函數(shù)y=g(x)在區(qū)間(a,a+1)上均為增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若方程f(x)=g(x)+m有唯一解,求實數(shù)m的值.
解:(Ⅰ)
(x>0)
當0<x<2時,f'(x)<0,當x>2時,f'(x)>0,
要使f(x)在(a,a+1)上遞增,必須a≥2g(x)=-x
2+14x=-(x-7)
2+49
如使g(x)在(a,a+1)上遞增,必須a+1≤7,即a≤6
由上得出,當2≤a≤6時f(x),g(x)在(a,a+1)上均為增函數(shù)
(Ⅱ)方程f(x)=g(x)+m有唯一解
有唯一解
設h(x)=2x
2-8lnx-14x
(x>0)h'(x),h(x)隨x變化如下表
x | (0,4) | 4 | (4,+∞) |
h'(x) | - | 0 | + |
h(x) | ↘ | 極小值-24-16ln2 | ↗ |
由于在(0,+∞)上,h(x)只有一個極小值,
∴h(x)的最小值為-24-16ln2,
當m=-24-16ln2時,方程f(x)=g(x)+m有唯一解.
分析:(I)由已知中函數(shù)f(x)=x
2-8lnx,g(x)=-x
2+14x的解析式,我們易求出他們導函數(shù)的解析式,進而求出導函數(shù)大于0的區(qū)間,構造關于a的不等式,即可得到實數(shù)a的取值范圍;
(Ⅱ)若方程f(x)=g(x)+m有唯一解,則函數(shù)h(x)=f(x)-g(x)=2x
2-8lnx-14x與y=m的圖象有且只有一個交點,求出h'(x)后,易求出函數(shù)的最值,分析函數(shù)的性質(zhì)后,即可得到滿足條件的實數(shù)m的值.
點評:本題考查的知識點是利用導數(shù)研究函數(shù)的單調(diào)性,利用函數(shù)研究函數(shù)的極值,其中根據(jù)已知函數(shù)的解析式,求出函數(shù)的導函數(shù)是解答此類問題的關鍵.