函數(shù)f(x)=loga(x-4)+2(a≠1,a>0)的圖象過定點(diǎn)P,則P點(diǎn)的坐標(biāo)是 ________.

(5,2)
分析:定點(diǎn)的意思是與該點(diǎn)坐標(biāo)與a的取值無關(guān),所以令x-4=1即可求解.
解答:根據(jù)題意:令x-4=1
解得:x=5,此時(shí)y=2
所以定點(diǎn)的坐標(biāo)是(5,2)
故答案為(5,2).
點(diǎn)評:本題主要通過定點(diǎn)問題來考查對數(shù)函數(shù)的圖象和性質(zhì),在研究基本函數(shù)時(shí),要多注意圖象的分布及關(guān)鍵線,關(guān)鍵點(diǎn).如本題,對數(shù)函數(shù)恒過定點(diǎn)(1,0),這就是關(guān)鍵點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個(gè)命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案