【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|< )的部分圖象如圖所示,下列說法正確的是( )
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關于點(﹣ ,0)對稱
C.將函數(shù)f(x)的圖象向左平移 個單位得到的函數(shù)圖象關于y軸對稱
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+ ,kπ+ ](K∈Z)
【答案】D
【解析】解:根據(jù)圖象得到:A=2, = ﹣ ,
∴T=π,故A錯誤;
∴ =π,
∴ω=2,
∴f(x)=2sin(2x+φ),
將點( ,2)代入得到2sin( +φ)=2,|φ|< ,
∴φ= ,
∴f(x)=2sin(2x+ ).
令x=﹣ ,可得:f(﹣ )=2sin(﹣ + )=﹣2,故B錯誤;
f(x+ )=2sin[2(x+ )+ ]=2sin(2x+ ),由于f(0)=2sin = 不是最大值,故C錯誤;
令2kπ﹣ ≤2x+ ≤2kπ﹣ ,k∈Z,可得:kπ+ ≤x≤kπ+ ,K∈Z,可得函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+ ,kπ+ ](K∈Z),故D正確.
故選:D.
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點,則f(x)的極小值為( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | π | ||||
Asin(ωx+φ) | 0 | 3 | ﹣3 | 0 |
(1)請將上表空格中處所缺的數(shù)據(jù)填寫在答題卡的相應位置上,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點的橫坐標縮短為原來的 ,再將所得圖象向左平移 個單位,得到y(tǒng)=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中是真命題的個數(shù)是( )
(1)垂直于同一條直線的兩條直線互相平行
(2)與同一個平面夾角相等的兩條直線互相平行
(3)平行于同一個平面的兩條直線互相平行
(4)兩條直線能確定一個平面
(5)垂直于同一個平面的兩個平面平行
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,點P,G分別是,的中點,已知⊥平面ABC,==3,==2.
(I)求異面直線與AB所成角的余弦值;
(II)求證:⊥平面;
(III)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前三項依次為a,3,5a,前n項和為Sn,且Sk=121.
(1)求a及k的值;
(2)設數(shù)列{bn}的通項bn=,證明數(shù)列{bn}是等差數(shù)列,并求其前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連接球面上兩點的線段稱為球的弦,半徑為4的球的兩條弦AB,CD的長度分別為2 和4 ,M,N分別是AB,CD的中點,兩條弦的兩端都在球面上運動,有下面四個命題:
①弦AB,CD可能相交于點M;
②弦AB,CD可能相交于點N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com