【題目】現(xiàn)有1000根某品種的棉花纖維,從中隨機(jī)抽取50根,纖維長度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)如表,據(jù)此估計這1000根中纖維長度不小于37.5mm的根數(shù)是 .
纖維長度 | 頻數(shù) |
[22.5,25.5) | 3 |
[25.5,28.5) | 8 |
[28.5,31.5) | 9 |
[31.5,34.5) | 11 |
[34.5,37.5) | 10 |
[37.5,40.5) | 5 |
[40.5,43.5] | 4 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題”某班針對“高中生物理對數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如表:
編號 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)(y) | 130 | 125 | 110 | 95 | 90 |
(參考公式:b= , = b ,)參考數(shù)據(jù):902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學(xué)y成績關(guān)于物理成績x的線性回歸方程 = x+ (b精確到0.1),若某位學(xué)生的物理成績?yōu)?0分時,預(yù)測他的物理成績.
(2)要從抽取的這五位學(xué)生中隨機(jī)選出三位參加一項知識競賽,以X表示選中的學(xué)生的數(shù)學(xué)成績高于100分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方體ABCD﹣A1B1C1D1中AC1與BD1的交點(diǎn),則△PAC在該正方體各個面上的射影可能是( )
A.①②③④
B.①③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,.
(1)在邊上任取一點(diǎn),求滿足的概率;
(2)在的內(nèi)部任作一條射線,與線段交于點(diǎn),求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,已知建筑第5層樓房時,每平方米建筑費(fèi)用為萬元.
若學(xué)生宿舍建筑為x層樓時,該樓房綜合費(fèi)用為y萬元,綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和,寫出的表達(dá)式;
為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時平均綜合費(fèi)用為每平方米多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,A1B與AB1交于點(diǎn)D,A1C與AC1交于點(diǎn)E.求證:
(1)DE∥平面B1BCC1;
(2)平面A1BC⊥平面A1ACC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn(n∈N*),且滿足: ①|(zhì)a1|≠|(zhì)a2|;
②r(n﹣p)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 其中r,p∈R,且r≠0.
(1)求p的值;
(2)數(shù)列{an}能否是等比數(shù)列?請說明理由;
(3)求證:當(dāng)r=2時,數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)和動直線l:y=kx+b(k,b是參變量,且k≠0.b≠0)相交于A(x1 , y2),N)x2 , y2)兩點(diǎn),直角坐標(biāo)系原點(diǎn)為O,記直線OA,OB的斜率分別為kOAkOB= 恒成立,則當(dāng)k變化時直線l恒經(jīng)過的定點(diǎn)為( )
A.(﹣ p,0)
B.(﹣2 p,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x+φ),且 f(x)dx=0,則下列說法正確的是( )
A.f(x)的一條對稱軸為x=
B.存在φ使得f(x)在區(qū)間[﹣ , ]上單調(diào)遞減
C.f(x)的一個對稱中心為( ,0)
D.存在φ使得f(x)在區(qū)間[ , ]上單調(diào)遞增
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com