【題目】設(shè)數(shù)列的前項和,
(1)求數(shù)列的通項公式;
(2)令,記數(shù)列前n項和為,求;
(3)利用第二問結(jié)果,設(shè)是整數(shù),問是否存在正整數(shù)n,使等式成立?若存在,求出和相應(yīng)的值;若不存在,說明理由.
【答案】(1);(2)(3)當(dāng)時,存在正整數(shù),使等式成立,當(dāng)時,不存在正整數(shù)使等式成立.
【解析】
(1)直接由與的關(guān)系求解;
(2)將(1)中求得的結(jié)果代入,化簡后利用裂項相消法求和;
(3)將表示為含n的等式,利用是整數(shù),找出符合條件的n即可.
(1)令n=1得,;當(dāng)n時,,
所以
(2)當(dāng)時,,此時 ,又
∴.
故,
當(dāng)時,
.
(3)若,
則等式為,不是整數(shù),不符合題意;
若,則等式為,
∵是整數(shù), ∴必是的因數(shù), ∵時
∴當(dāng)且僅當(dāng)時,是整數(shù),從而是整數(shù)符合題意.
綜上可知,當(dāng)時,存在正整數(shù),使等式成立,
當(dāng)時,不存在正整數(shù)使等式成立
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求圖中的值,并估計該班期中考試數(shù)學(xué)成績的眾數(shù);
(Ⅱ)從成績不低于90分的學(xué)生和成績低于50分的學(xué)生中隨機選取2人,求這2人成績均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大報告指出,要推進綠色發(fā)展,倡導(dǎo)“簡約知適度、綠色低碳”的生活方式,開展創(chuàng)建“低碳生活,綠色出行”等行動.在這一號召下,越來越多的人秉承“能走不騎,能騎不坐,能坐不開”的出行理念,盡可能采取乘坐公交車騎自行車或步行等方式出行,減少交通擁堵,共建清潔、暢通高效的城市生活環(huán)境.某市環(huán)保機構(gòu)隨機抽查統(tǒng)計了該市部分成年市民某月騎車次數(shù),統(tǒng)計如下:
次數(shù) 人數(shù) 年齡 | ||||||
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.
(I)若從被抽查的該月騎車次數(shù)在的老年人中隨機選出兩名幸運者給予獎勵,求其中一名幸運者該月騎車次數(shù)在之間,另一名幸運者該月騎車次數(shù)在之間的概率;
(Ⅱ)用樣本估計總體的思想,解決如下問題:
()估計該市在32歲至44歲年齡段的一個青年人每月騎車的平均次數(shù);
() 若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),能否在犯錯誤的概率不超過0.001的前提下認為“騎行愛好者”與“青年人”有關(guān)?
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分別為AC,DC的中點.
(1)求證:EF⊥BC;
(2)求二面角E-BF-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)如下表:
溫度x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
產(chǎn)卵個數(shù)y/個 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
(I)根據(jù)散點圖判斷,與哪一個適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);
(II)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(Ⅲ)紅鈴蟲是棉區(qū)危害較重的害蟲,可從農(nóng)業(yè)、物理和化學(xué)三個方面進行防治,其中農(nóng)業(yè)方面防治有3種方法,物理方面防治有1種方法,化學(xué)方面防治3種方法,現(xiàn)從7種方法中選3種方法進行綜合防治(即3種方法不能全部來自同一方面,至少來自兩個方面),X表示在綜合防治中農(nóng)業(yè)方面的防治方法的種數(shù),求X的分布列及數(shù)學(xué)期望E(X).
附:可能用到的公式及數(shù)據(jù)表中(表中 , = , = , = )
27.430 | 3.612 | 81.290 | 147.700 | 2763.764 | 705.592 | 40.180 |
對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,,.設(shè),分別為,中點.
(1)求證:平面;
(2)求證:平面;
(3)試問在線段上是否存在點,使得過三點,,的平面內(nèi)的任一條直線都與平面平行?若存在,指出點的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某理財公司有兩種理財產(chǎn)品A和B,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):
產(chǎn)品A
投資結(jié)果 | 獲利40% | 不賠不賺 | 虧損20% |
概率 |
產(chǎn)品B
投資結(jié)果 | 獲利20% | 不賠不賺 | 虧損10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實數(shù)p的取值范圍;
(2)若丙要將家中閑置的10萬元人民幣進行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)產(chǎn)品從5月1日起開始上市,通過市場調(diào)查,得到該農(nóng)產(chǎn)品種植成本Q(單位:元/)與上市時間t(單位:天)的數(shù)據(jù)如下表:
t | 50 | 110 | 250 |
Q | 150 | 108 | 150 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述該農(nóng)產(chǎn)品種植成本Q與上市時間t的變化關(guān)系,并求出函數(shù)關(guān)系式:,,,.
(2)利用你選取的函數(shù),求該農(nóng)產(chǎn)品種植成本最低時的上市時間及最低種植成本.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com