年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求y=f(x)的表達(dá)式;?
(2)若任意實(shí)數(shù)x都滿(mǎn)足等式f(x)·g(x)+anx+bn=xn+1,(g(x)為多項(xiàng)式,n∈N),試用t表示an和bn;?
(3)設(shè)圓Cn的方程是(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)y=f(x)在x=處取得最小值- (t>0),f(1)=0.
(1)求y=f(x)的表達(dá)式;
(2)若任意實(shí)數(shù)x都滿(mǎn)足等式f(x)·g(x)+anx+bn=xn+1[g(x)]為多項(xiàng)式,n∈N*),試用t表示an和bn;
(3)設(shè)圓Cn的方程為(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…);{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn、Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)y=f(x)在x=處取得最小值- (t>0), f(1)=0.
求y=f(x)的表達(dá)式;
若任意實(shí)數(shù)x都滿(mǎn)足等式f(x)·g(x)+anx+bn=xn+1[g(x)]為多項(xiàng)式,n∈N*),試用t表示an和bn;
設(shè)圓Cn的方程為(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…);{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn、Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:四川省雅安中學(xué)09-10學(xué)年高二上學(xué)期期中考試 題型:解答題
已知二次函數(shù)y=f(x)在x= 處取得最小值- (t﹥0),f(1)=0, (1)求y=f(x)的表達(dá)式;(2)若任意實(shí)數(shù)x都滿(mǎn)足等式f(x)g(x)+anx+bn=xn+1 (g(x)為多項(xiàng)式,n∈N+)試用t表示an和bn;(3)設(shè)圓Cn的方程為(x-an)2+(y-bn)2=r ,圓Cn與Cn+1 外切(n=1,2,3…),{rn}是各項(xiàng)都為正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,sn。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com