(文)若點F1,F(xiàn)2為橢圓數(shù)學公式的焦點,P為橢圓上的點,滿足∠F1PF2=90°,則△F1PF2的面積為


  1. A.
    1
  2. B.
    2
  3. C.
    數(shù)學公式
  4. D.
    4
A
分析:由橢圓方程?點F1(-,0),F(xiàn)2,0);又∠F1PF2=90°,故點P也在以原點為圓心,為半徑的圓x2+y2=3上,兩曲線方程聯(lián)立,可求得點P的縱坐標,△F1PF2的面積可求.
解答:由橢圓方程得焦點F1(-,0),F(xiàn)2,0),設P(x0,y0
∵∠F1PF2=90°,
∴點P在以原點為圓心,為半徑的圓x2+y2=3上,
解得y2=,即|y0|=,
=|F1F2|•|y0|==1.
故選A.
點評:本題考查橢圓的簡單性質,關鍵在于對題意的理解與方法的選擇,除上邊的方程組法,也可以設|PF1|=x,|PF2|=2a-x,在直角△F1PF2中求得x,再求其面積,也可以用向量法解決,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文)若點F1,F(xiàn)2為橢圓
x2
4
+y2=1
的焦點,P為橢圓上的點,滿足∠F1PF2=90°,則△F1PF2的面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(文)若點F1,F(xiàn)2為橢圓
x2
4
+y2=1
的焦點,P為橢圓上的點,滿足∠F1PF2=90°,則△F1PF2的面積為( 。
A.1B.2C.
1
2
D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都外國語學校AP國際部高二(上)期末數(shù)學試卷(解析版) 題型:選擇題

(文)若點F1,F(xiàn)2為橢圓的焦點,P為橢圓上的點,滿足∠F1PF2=90°,則△F1PF2的面積為( )
A.1
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省葫蘆島二中高二(上)12月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

(文)若點F1,F(xiàn)2為橢圓的焦點,P為橢圓上的點,滿足∠F1PF2=90°,則△F1PF2的面積為( )
A.1
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都外國語學校AP國際部高二(上)期末數(shù)學試卷(解析版) 題型:選擇題

(文)若點F1,F(xiàn)2為橢圓的焦點,P為橢圓上的點,滿足∠F1PF2=90°,則△F1PF2的面積為( )
A.1
B.2
C.
D.4

查看答案和解析>>

同步練習冊答案