解:(1)證明:取AD中點(diǎn)E,連接ME,NE,
由已知M,N分別是PA,BC的中點(diǎn),
∴ME∥PD,NE∥CD
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PCD,
所以,MN∥平面PCD
(2)證明:因?yàn)镻D⊥平面ABCD,
所以PD⊥DA,PD⊥DC,
在矩形ABCD中,AD⊥DC,
如圖,以D為坐標(biāo)原點(diǎn),
射線DA,DC,DP分別為x軸、y軸、z軸的正半軸建立空間直角坐標(biāo)系
則D(0,0,0),A(,0,0),B(,1,0)C(0,1,0),P(0,0,)
所以M(,0,),,
∵•=0,所以MC⊥BD
(3)解:因?yàn)镸E∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,
所以BD⊥平面MCE,
所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD,
由已知,
所以平面PBD的法向量
M為等腰直角三角形PAD斜邊中點(diǎn),所以DM⊥PA,
又CD⊥平面PAD,AB∥CD,
所以AB⊥平面PAD,AB⊥DM,
所以DM⊥平面PAB,
所以平面PAB的法向量(-,0,)
設(shè)二面角A-PB-D的平面角為θ,
則.
所以,二面角A-PB-D的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com